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Good	morning.	
My	name	is	Emiliano	Ippoliti.	I	work	in	the	Jülich	Research	Center	in	Germany	
and	this	morning	my	task	is	to	give	you	a	short	introduction	on	QM/MM	
approaches.	
	
So	far,	during	this	week,	you	have	seen	and	used	methods	based	on	classical	
physics.		
However,	if	we	want	to	talk	about	QM/MM,	that	is	a	short	for	Quantum	
Mechanics/Molecular	Mechanics,	we	need	to	talk	about	quantum	physics.	But	I	
also	know	that	some	of	you	is	not	so	much	familiar	with	quantum	physics	and	
quantum	mechanics	yet.	Therefore,	in	the	first	part	of	this	lesson	I	am	going	to	
revise	some	basic	elements	about	quantum	mechanics	and	quantum	chemistry,	
essential	to	understand,	let	us	say,	the	big	picture.	But	I	would	like	that	you	keep	
in	mind	from	the	beginning	that	if	you	want	to	use	QM/MM	approaches	to	
investigate	your	systems,	what	you	will	see	and	learn	today	is	absolutely	not	
enough	and	you	will	need	to	do	the	effort	to	go	more	in	depth	in	the	theory	of	
computational	quantum	chemistry	if	you	really	plan	to	employ	it	in	your	
investigations.		
	
After	my	theoretical	lesson,	my	colleague	Modi	Vaibhav	has	prepared	for	you	
some	tutorials	where	you	will	have	the	chance	to	watch	QM/MM	at	work,	with	
practical	examples	and	real	calculations,	by	using	the	CP2K	code.	
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This	is	a	rather	popular	quantum	code	with	many	features,	some	of	which	I	will	
mention	in	this	lesson,	and	others	will	be	introduced	by	Modi	in	the	tutorial.	
	
Summarizing,	my	intent	today,	is	to	provide	you	with	a	quick	overview	of	the	
essential	concepts	of	quantum	mechanics	and	computational	quantum	chemistry	
and	then	shortly	introduce	QM/MM	in	order	to	make	easier	to	understand	what	
Modi	is	going	to	show	you	in	the	tutorial.	
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In	particular,	here	is	the	outline.	In	the	first	part	we	will	discuss	about		

- when	and	why	quantum	mechanics	is	useful	in	biology;	
- moreover,	as	just	said,	I	will	give	you	a	short	recap	of	the	crucial	concepts	

in	quantum	mechanics	and	computational	quantum	chemistry;	
- then,	we	will	talk	about	why	we	need	to	introduce	hybrid	QM/MM	

approaches;	
- and	in	the	second	part	of	this	lesson,	after	the	break,	we	will	go	more	in	

depth	about	how	to	build	a	QM/MM	method,	and	how	quantum	and	



classical	regions	can	be	coupled	in	a	QM/MM	scheme,	focusing	in	
particular	to	the	approaches	implemented	in	the	CP2K	code.	
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Let	us	start	by	answering	the	question:	Why	do	we	need	Quantum	Mechanics	in	
describing	biological	systems?	
	
In	fact,	in	the	previous	days	you	used	approaches,	such	as	force	field	based	
molecular	mechanics	or	docking,	where	the	finest	resolution	is	the	atom,	that	is	
the	atoms	are	described	like	points	in	the	space,	moving	according	to	the	
classical	Newton	equations,	if	the	dynamics	was	of	interest.		

However,	there	are	many	phenomena	in	nature,	including	in	biology,	where	such	
level	of	detail	is	not	sufficient.	Here	are	some	examples:	

- First,	when	chemical	reactions	are	involved	(for	example	if	you	want	to	
study	enzymatic	reactions);	

- secondly	when	you	want	to	work	with	systems	containing	metal	atoms,	
for	which	no	universal	classical	parametrization	is	in	general	available	
and	ad	doc	force	field	parameters	have	to	be	tuned	in	each	specific	case;	

- third	example	is	when	you	want	to	study	a	phenomenon	that	involves	
proton	transport,	such	as	in	the	aerobic	generation	of	ATP	or	in	
photosynthesis:	in	fact,	in	hydrogen-bonded	solvents	like	water,	protons	
do	not	diffuse	as	the	other	common	cations,	that	is	as	a	random	Brownian	
mass	motion	due	to	thermal	fluctuations.	Instead,	the	excess	proton	
diffuses	via	the	so-called	Grotthuss	mechanism,	sketched	in	the	picture	
here	at	right,	that	is	through	the	formation	and	concomitant	cleavage	of	
covalent	bonds	involving	neighboring	molecules;	

- as	last	example,	quantum	mechanics	is	necessary	when	we	need	to	
perform	first	principle-based	predictions	of	spectroscopic	data,	such	as	
absorption	and	fluorescence	spectra	or	even	NMR,	because	empirical	
parameterizations	are	unavailable	or	unreliable.	

What	do	all	these	examples	have	in	common?	The	fact	that	the	dynamical	
behaviour	of	the	electrons	inside	the	atoms	is	fundamental	for	a	correct	
description	of	the	phenomenon	and	cannot	be	neglected	as	done	for	example	
when	we	use	the	force-field	approach.	Unfortunately,	electrons,	as	well	as	the	
lightest	nuclei	such	as	protons,	cannot	be	dynamical	described	through	the	
classical	Newton	equation	and	a	more	complex	theory	is	required,	that	is	
quantum	mechanics. 
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The	fundamental	equation	of	quantum	mechanics	is	the	so-called	Schrödinger	
equation,	here	at	the	top	of	the	slide.	Calculate	the	quantum	properties	of	a	
system,	implies	to	solve	the	corresponding	Schrodinger	equation,	which	you	can	
consider	it	the	equivalent	of	the	Newton	equations	in	the	classical	world.	



	
The	unknown	variable	of	the	Schrödinger	equation	is	Psi,	the	so-called	wave	
function	of	the	entire	quantum	system.	It	is	a	function	of	the	coordinates	of	the	
quantum	elements	in	the	systems,	that	is	electrons	and	nuclei	for	a	molecular	
system,	and	the	time.	
Knowing	the	wave	function	of	the	system	at	a	certain	time	allows	us	to	compute	
the	properties	of	that	system	at	that	time	by	solving	in	principle	an	integral	like	
this.		
The	squared	modulus	of	Psi	is	proportional	to	the	charge	density	distribution	of	
the	system.	
H	in	the	Schrödinger	equation	is	instead	the	so-called	Hamiltonian	and	it	
represents	the	physics	of	the	system.	It	is	the	equivalent	of	the	force	field	at	
classical	level,	that	is	it	contains	the	interaction	energy	terms	of	electrons	and	
nuclei.		
For	example,	here	I	reported	a	typical	Hamiltonian	used	to	describe	molecular	
systems	in	quantum	chemistry,	where	now	small	and	capital	“r”	represent	
electronic	and	nuclear	coordinates,	respectively.	From	left	to	right	you	can	
recognise		

- the	kinetic	term	for	the	nuclei,	
- the	kinetic	term	for	the	electrons,	
- the	Coulomb	interaction	terms	between	electrons,		
- between	electrons	and	nuclei,		
- and	finally,	the	Coulomb	interaction	terms	between	the	nuclei.	

	
The	Schrödinger	equation	is	mathematically	extremely	complex	to	solve.	Just	to	
give	you	an	example,	with	even	only	one	particle,	so	N	equals	to	1,	and	a	non-so-
complex	Hamiltonian,	exact	analytical	solutions	are	not	available.	Therefore,	for	
the	many-body	systems	we	usually	deal	with,	the	Schrödinger	equation	can	only	
be	solved	approximately	by	numerical	solutions	generated	via	computers	and	
many	approximate	approaches	have	been	devised	in	the	years	for	this	aim.	
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In	particular,	if	we	are	interested	only	in	the	properties	of	a	system	and	not	to	its	
dynamical	behaviour	we	can	prove	that	it	is	enough	to	solve	a	slightly	simpler	
equation,	called	time-independent	Schrödinger	equation,	where	now	the	
wavefunction	Psi	is	independent	from	the	time.	Here	at	the	right	I	listed	some	of	
the	many	schemes	developed	to	approximately	solve	this	simpler	equation:	
Hartree-Fock	theory,	Couple	Cluster,	Density	Functional	Theory,	etc	
	
When	instead	we	are	also	interested	to	the	dynamics	of	the	quantum	system,	the	
full	time-dependent	Schrödinger	equation	needs	to	be	solved	and	some	different	
approaches	are	nowadays	available	to	approximately	find	the	solutions	to	this	
equation.	Are	these	the	so-called	ab	initio	molecular	dynamics	schemes,	such	as	
the	Ehrenfest,	the	Bohr-Oppenheimer	or	the	Car-Parrinello	molecular	dynamics	
schemes.	
	



All	those	schemes	share	the	assumption	or	better	the	approximation	that	the	
motion	of atomic	nuclei and the	one	of	the	electrons in	a	molecule	can	be	treated	
separately,	but	also	in	addition	that	the	nuclear	motion	can	be	considered	as	a	
classical	motion.	
This	mostly	because	the	masses	of	the	nuclei	are	at	least	3	orders	of	magnitude	
larger	than	the	electronic	mass,	and	thinking	classically	the	nuclei	are	much	
slower	than	the	electrons.		
This	assumption	is	often	collected	under	the	name	Born-Oppenheimer	
approximation,	not	to	be	confused	with	the	molecular	dynamics	scheme	just	
mentioned,	even	if	nowadays	this	name	refers	to	a	more	technical	aspect	of	the	
assumption	that	I	cannot	describe	here.	In	the	large	majority	of	the	molecular	
systems,	including	the	typically	large	biological	systems,	this	approximation	is	
well	verified	and	can	be	safely	employed.	
	
I	do	not	have	time	to	enter	in	much	more	details	about	the	different	ab	initio	
molecular	dynamics	schemes,	but	I	want	to	briefly	mention	how	the	Bohr-
Oppenheimer	dynamical	scheme	works,	because	that	is	implemented	in	the	
CP2K	code	and	you	will	use	it	in	the	tutorials.	
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In	this	slide	I	wrote	down	the	two	equations	that	describe	the	Bohr-
Oppenheimer	molecular	dynamics	scheme.	
	
The	first	thing	to	note	is	the	separation	between	the	electronic	degrees	of	
freedom,	first	equation,	and	the	nuclear	degrees	of	freedom,	second	equation.		
	
The	second	thing	to	note	is	that	the	electronic	problem	does	not	evolve	in	time,	it	
is	a	time-independent	Schrödinger	equation,	while	the	nuclear	degrees	of	
freedom	evolve	in	time	as	classical	entities,	that	is	according	to	a	Newton-like	
equation:	mass	times	acceleration	(the	two	dots	over	capitol	R	mean	second	
derivative	with	respect	time)	equals	to	minus	the	gradient	of	quantity	that	
represents	the	potential	felt	by	the	nuclei.	
	
Schematically,	the	algorithm	associated	to	this	molecular	dynamics	approach	
proceeds	this	way:	at	each	time	step	a	time	independent	Schrödinger	equation	
involving	only	the	electronic	degrees	of	freedom	is	solved	via	some	electronic	
structure	method	like	the	ones	mentioned	before	(Hartree-Fock,	Density	
Functional	Theory,	etc).	Note	that	in	the	H_e	Hamiltonian	in	this	equation,	the	
nuclear	coordinates	capital	R	are	not	dynamical	variables	but	just	parameters:	in	
this	approximation,	the	electrons	move	within	a	static	electric	field	due	to	the	
presence	of	the	nuclei.	
	
The	electronic	wavefunction	Psi_0	found	solving	this	time-independent	
Schrödinger	equation,	is	used	in	the	next	step	of	the	algorithm,	to	calculate	the	
forces	on	the	nuclei	via	the	right-hand	side	of	the	second	equation.	In	fact,	the	
forces	are	obtained	as	minus	the	gradient	of	a	potential	that	depends	on	the	
electronic	wavefunction	Psi_0.	
	



Finally,	having	obtained	the	forces,	the	nuclei	are	moved	according	to	a	Newton-
like	equation,	and	the	cycle	can	start	again	for	the	new	step	by	using	the	new	
nuclear	coordinates	capital	R	just	found	as	the	new	parameter	of	the	time	
independent	Schrödinger	equation.	
		
Note	that	the	electronic	problem	in	the	first	equation	has	an	infinite	number	of	
solutions,	each	one	corresponding	to	a	different	energy	state.	However,	among	
those	solutions	here	we	are	interested	to	the	wavefunction	corresponding	to	the	
state	with	the	smallest	energy,	i.e.	the	ground	state,	as	indicated	with	the	
subscript	“0”.	
	
Instead	the	“min”	symbol	in	the	second	equation	refers	to	the	fact	that	the	
electronic	problem	consisting	of	solving	the	time-independent	Schrödinger	
equation,	i.e.	of	finding	Psi_0,	can	be	recast	in	a	variational	problem,	i.e.	a	
problem	of	finding	a	minimum.	This	is	the	so-called	wavefunction	minimization	
or	optimization	procedure,	and	on	a	computer,	it	is	computationally	more	
convenient	to	implement	it	than	any	other	algorithm	that	tries	to	solve	directly	
the	time-independent	Schrödinger	equation.	We	will	see	an	example	of	this	
minimization	algorithm	in	a	few	slides.	
Let’s	now	focus	on	the	methods	to	solve	the	first	equation.	
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As	I	mentioned	before,	many	methods	have	been	devised	in	the	years	to	
approximately	solve	the	time-independent	Schrödinger	equation.	Some	are	very	
accurate	and	computational	expensive,	others	are	computationally	less	
demanding	but	also	limited	in	accuracy. 
However,	almost	every	quantum	code	used	by	computational	biophysicists	and	
biochemists	implements	the	Density	Functional	Theory,	including	CP2K,	the	code	
you	will	use	in	the	tutorial.	In	fact,	this	relatively	recent	approach	represents	
probably	the	best	compromise	between	accuracy	and	computational	cost	and	it	
is	therefore	currently	one	of	the	very	few	approaches	that	offers	the	possibility	to	
deal	with	systems	of	order	of	hundreds	of	atoms	with	sufficient	accuracy.	
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Let’s	briefly	describe	the	Density	Functional	Theory.	It	is	based	on	the	following	
two	theorems	proved	by	the	physicists	Hohenberg	and	Kohn:	

- First,	the	ground	state	energy	(and	therefore	the	ground	state	properties)	
of	a	many-electron	system	is	a	unique	functional	of	the	electronic	density	
rho.	Here	functional	means	a	function	of	another	function.	In	fact,	the	
density	rho	is	a	function	of	the	three	space	coordinates.	In	each	point	of	
the	3D-space	you	have	a	value	of	the	electronic	density.		

- Second,	the	functional	for	the	ground	state	energy	E_rho	is	variational,	in	
the	sense	we	have	mentioned	before.		

	



The	benefit	to	use	this	method	is	that	instead	to	calculate	the	wavefunction	psi_0,	
which	depends	on	all	the	electronic	coordinates,	the	properties	of	the	system	
depend	only	on	rho,	which	in	turn	depends	only	on	3	coordinates,	the	spatial	
coordinates.	

The	drawback	is	that	the	functional	E_rho	is	not	known,	and	therefore,	as	it	is,	the	
theory	cannot	be	used	in	practice.	
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Luckily,	the	physicists	Kohn	and	Sham	in	1965	had	the	idea	to	recast	the	problem	
in	order	to	make	Density	Functional	Theory	a	practical	method.	Their	idea	is	
simple:	they	hypothesized	a	fictitious	system	of	non-interacting	electrons	with	a	
local	potential	that	generates	by	construction,	the	same	electronic	density	as	the	
one	of	the	real	fully-interacting	system.	In	this	way	the	problem	to	find	the	
density	rho	of	the	real	fully-interacting	system	that	minimizes	the	functional	E	of	
rho	is	recast	to	the	problem	of	solving	N	single-electron	equations,	much	easier	
to	solve	than	an	equation	of	N-electrons.	And	above	all,	all	the	terms	in	the	single	
electron	equations	are	known	apart	from	one,	the	so-called	exchange-correlation	
functional.		

In	these	Kohn-Sham	equations	the	phi_i’s	represent	the	single	electron	
wavefunctions,	not	to	be	confused	with	the	psi_0	in	the	previous	slide,	that	is	the	
wavefunction	of	the	entire	system	formed	by	N	electrons.	And	rho	can	be	
obtained	from	the	phi_i’s	by	using	the	first	relation	in	the	slide.	

In	practice,	quantum	chemists	have	proposed	many	recipes	to	approximate	the	
unknown	exchange-correlation	functional	E_xc,	for	example	by	calculating	it	for	
the	simplest	cases,	such	as	the	homogeneous	electron	gas,	or	by	fitting	
experimental	data.	

When	you	have	to	specify	the	level	of	theory	you	are	going	to	use	to	solve	the	
electronic	problem	with	Density	Functional	Theory	you	need	also	to	state	
explicitly	the	exchange-correlation	functional	to	be	employed.	

Having	decided	which	exchange-correlation	functional	to	use,	how	do	we	get	the	
electronic	density	rho?		
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In	other	words,	how	does	the	algorithm	that	solves	the	system	of	N	single-
electron	Kohn-Sham	equations	work?	

This	is	done	through	an	iterative	procedure	because	the	Kohn-Sham	equations	
are	nonlinear,	which	means	that	some	terms	in	the	equations	depend	on	the	
electronic	density	itself,	that	is	on	the	solutions.		

The	iterative	procedure	to	solve	these	equations	can	be	summarized	this	way:	



- First,	we	start	with	an	arbitrary	electronic	density	in	order	to	define	
completely	the	equations	to	be	solved;		

- then,	we	find	the	phi_i’s,	i.e.	the	single	electron	wavefunctions	that	can	be	
used	to	get	the	new	electronic	density	by	using	this	equality	

- and	we	measure	somehow	the	difference	between	the	new	and	the	
previous	density.	If	the	difference	is	below	some	predetermined	threshold	
we	considered	the	new	density	already	converged	and	we	stop	the	
iterations,	otherwise	we	take	the	new	density	and	we	go	back	to	the	first	
step.	

This	self-consistent	approach	is	very	commonly	used	in	quantum	chemistry	and	
in	general	when	you	have	to	solve	nonlinear	equations	like	the	Kohn-Sham	
equations.	
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All	the	equations	we	have	seen	so	far,	including	the	KS	equations	are	continuous	
equations.	Their	solutions,	as	for	example	the	phi_i’s	in	the	Kohn-Sham	equations	
are	functions	defined	on	the	space.	However,	to	put	such	a	problem	on	a	
computer,	we	need	to	discretize	it.	How	can	we	discretize	the	problem	of	solving	
the	Kohn-Sham	equations?	

This	is	done	by	expanding	the	wavefunctions	(or	the	density)	over	a	finite	set	of	
known	functions,	and	we	refer	usually	to	this	set	of	functions	as	the	basis	set.	
This	way	the	problem	to	solve	a	continuous	differential	equation	is	recast	in	the	
problem	to	diagonalize	a	matrix	and	find	eigenvalues	and	eigenvectors.	

When	one	wants	to	specify	the	type	of	quantum	chemistry	calculation	is	going	to	
perform	on	a	computer,	they	need	to	specify	both	the	level	of	theory	(e.g.	DFT	
together	with	the	chosen	exchange	correlation	functional)	and	also	the	employed	
basis	set.	This	defines	completely	the	employed	level	of	theory.	

Commonly,	two	classes	of	basis	sets	can	be	identified:	

- the	localized	basis	sets,	such	as	the	atom-centered	Gaussian	functions,	
very	suitable	to	describe	the	wavefunction	of	localized	objects	like	
molecules,	

- and	nonlocal	basis	sets,	such	as	the	plane	waves,	which	were	originally	
employed	to	describe	the	wavefunctions	of	condensed	matter/solid	state	
systems.	

Both	types	of	basis	sets	have	advantages	and	disadvantages.	In	the	slide	I	listed	
some	of	them	but	I	do	not	want	to	enter	now	in	more	details.	

Really,	the	code	that	we	will	use	in	the	tutorial,	CP2K,	implements	also	a	more	
sophisticated	approach,	which	combines	both	classes:		
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this	is	the	so-called	hybrid	or	dual	Gaussian	and	Plane	Wave	method,	in	short	
GPW.	

The	method	uses	an	atom-centered	Gaussian-type	basis	to	describe	the	wave	
functions,	but	also	an	auxiliary	plane	wave	basis	to	describe	the	density.			

Using	a	plane	wave	basis	set	for	charge	density	means	using	grids	in	real	space	to	
represent	the	charge	density.	In	fact,	by	a	mathematical	operation	called	Fourier	
transform,	that	computationally	can	be	performed	in	a	very	efficient	way	on	a	
grid	with	an	algorithm	called	Fast	Fourier	Transforms	(FFT),	one	can	pass	from	
the	representation	on	the	real	space	grid	to	the	representation	on	the	reciprocal	
space,	that	is	the	G	space	of	the	plane	waves.	Finer	grids,	that	is	with	smaller	
cells,	correspond	to	larger	cutoffs	in	the	reciprocal	space.	

What	is	the	advantage	of	this	dual	representation,	that	is	localised	basis	set	for	
the	wavefunctions	and	nonlocal	basis	set	for	the	density?	The	advantage	is	
mainly	on	performance	or	better	scaling:	with	a	density	represented	as	a	sum	of	
plane	waves	or,	which	is	the	same,	on	a	regular	grid,	the	efficiency	of	the	Fast	
Fourier	Transforms	algorithm	can	be	exploited	to	obtain	the	long-range	energy	
terms	in	a	time	that	scales	linearly	with	the	system	size,	thus	circumventing	one	
of	the	major	bottlenecks	of	standard	Gaussian-based	calculations.		
We	will	come	back	on	this	in	more	details	later	today.	

As	you	will	see	at	the	tutorial,	in	order	to	set	up	a	calculation	in	CP2K	that	uses	
the	GPW	approach,	you	will	have	to	provide	information	on	both	the	Gaussian	
Type	Orbitals	and	the	plane	waves	basis	set	to	be	used.	
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The	largest	systems	investigated	so	far	via	full	quantum	mechanical	approaches,	
that	is	by	describing	the	entire	molecular	system	through	quantum	mechanics,	
include	less	than	10,000	atoms. 
In	contrast,	typical	sizes	of	biological	systems	are	much	larger	than	10,000	
atoms. 
	
Therefore,	investigating	interesting	biological	systems	at	full	quantum	
mechanical	level	is	beyond	the	current	state-of-the-art	hardware	and	software	
technologies.		But	as	we	have	seen	at	the	beginning,	there	are	cases	where	a	
quantum	mechanical	resolution	is	required,	also	for	large	biological	systems.	
This	implies	that	for	these	cases	at	present	the	only	viable	way	is	to	resort	to	
multiscale	approaches,	as	for	example	the	hybrid	quantum	
mechanical/molecular	mechanics	one.	
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In	fact,	in	the	biological	systems	the	region	where	the	electronic	description	is	
necessary	is	usually	a	spatially	limited	area	of	the	system	(e.g.	the	region	where	



the	chemical	reaction	takes	place),	and	this	feature	makes	a	QM/MM	approach	
very	suitable	for	these	systems.		
This	because,	in	the	QM/MM	approach	the	system	is	fictitiously	separated	in	two	
parts	that	are	described	at	different	levels	of	theory:	
 

- A	small	part,	the	QM	or	quantum	part,	usually	the	chemically	active	region	
or	in	general	the	region	where	the	electronic	degrees	of	freedom	are	
important,	that	is	treated	at	quantum	level	by	computationally	demanding	
electronic	structure	methods,	as	for	example	density	functional	theory.		 

- And	the	rest	of	the	system,	which	contains	atoms	that	for	example	do	not	
directly	participate	in	the	reaction,	that	is	instead	described	efficiently	at	a	
lower	level	of	theory,	usually	by	classical	force	fields.	This	part	is	usually	
referred	as	the	MM	or	classical	part. 

- A	QM/MM	interface	is	the	part	of	the	code,	or	a	standalone	code	that	
couples	in	a	coherent	way	the	two	different	resolutions.	

	
OK,	we	have	reached	the	end	of	the	first	part	of	the	lesson.	In	the	second	part,	
we	will	go	more	in	depth	on	how	the	coupling	between	the	quantum	and	the	
classical	regions	can	be	done,	and	we	will	describe	different	QM/MM	
approaches,	including	the	one	implemented	in	the	CP2K	code	that	you	will	
see	in	the	tutorial.	

	
	

	


