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 Energy and Forces

« Optimisation

DFT « Geometry optimisation
* Nudged elastic band
+ .
GPW basis set

* Molecular Dynamics

(Mixed Gaussian and PW) «  Born-Oppenheimer MD

* Properties
« Atomic charges (RESP, Mulliken, ...)
* Spectra
* Frequency calculations
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Outline
First part
= Why QM?

" Elements of Computational Quantum Chemistry
= Why QM/MM?

Second part

= QM/MM couplings

bioexgcel



QM description

There are cases where the dynamical behavior of the electrons of

your systems cannot be neglected and a guantum mechanical
description is required:

D \ 2
d.—‘,/

1. Chemical reactions (e.g. enzymatic reactions):
electron transfer, bond breaking and bond formation

2. Systems with metal atoms (e.g. metallo proteins): A

no universal parametrization for metal atoms
@ ¢

3. Proton transport (e.g. aerobic generation of ATP and oxygen):
Grotthuss mechanism (charge/topological diffusion vs mass diffusion)

A 1000

4. Spectroscopic analysis and prediction
(e.g. absorption and fluorescence spectra)

& (M-1 cm-1)

400
Wavelength (nm)
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Schodinger Equation (SE)

0 .
ih aq)(xl, X, t) = H (X, o, X)) P (X, e, Xy, )

 Y(Xxq,..,Xy,t) = system wavefunction

W (X4, ..., Xy, t)|? « charge density distribution
0t) = [ .. [W(EXy, oo, XN, £)* O(Xq, oo, Xy) W(Xy, .o, XN, £) dX; ... dXy

« H(X4,...,Xy) = Hamiltonian operator

T=_y th 5. V2+Z 02 _y e27 +y e’Z1Z;
e. g. = Iom, V1 12 i<J ;-] 11|R, r| I<Jr;-R}]|

I; = electronic coordinates, R;= nuclear coordinates
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Time-dependent and time-independent SE

Time-independent Schrodinger equation Solving numerical methods

R * Hartree Fock Theory
f]‘[(l‘l, ey RN)LIJ(I‘l, ey RN) =FE LI"(l‘l, ey RN) * Mgller-Plesset Perturbation Theory
* Coupled Cluster
* Generalised Valence Bond
e Complete Active Space SCF
* Density Functional Therory

Time-dependent Schrodinger equation Molecular dynamics schemes

0 . * Ehrenfest
lh . LI—'(I‘l, Y RN, t) — :7'[(1‘1, ren RN)LP(rl, ren RN' t) Born-Oppenheimer
ot e Car-Parrinello
 Kihne

Born-Oppenheimer approximation

*  Motion of atomic nuclei and electrons
m, << M[ can be treated separately

Nuclear motion can be treated classically
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Born-Oppenheimer MD scheme

time-independent SE, R; are here only parameters

fA
:]'[e(rl, . RN)I,DO(I‘l, N I‘N) — Eolpo(rl, . I‘N)

I'I- = electronic coordinates

S
M;R;(t) = -V, %in{<¢0|}[e|¢0>} R, = nuclear coordinates
\ 0
classical Newton equation: r?pin{<¢o|ﬁe|¢o>} is the potential felt by the nuclei
~ _ fl h* 2 2 ZZ ZZIZ] _
}[— ZIZ Zl V +Zl<]|l‘ rl lelRl

= —ZI — e(ry, .., Ry) Algorithm

At each time step:

* Solving the time-independent SE

* Use Y, to find the forces on nuclei
* Move the nuclei
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Electronic Structure Methods

Time-independent Schrodinger equation

3:\[(1‘1, ey RN)‘P(I‘l, N RN) =F ‘P(I‘l, . RN)

Many numerical methods to solve it approximately:

* Hartree Fock Theory

 Mogller-Plesset Perturbation Theory

* Coupled Cluster

* Generalised Valence Bond

 Complete Active Space SCF Best compromise

* Density Functional Theory @~ > between accuracy and
computational cost

¥

Very suitable for large systems
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Density Functional Theory (DFT)

Hohenberg-Kohn Theorems

1. The ground state energy is a unique functional of the
electronic density:

E = E|p]
2. The functional for the energy E|[p] is variational:

ngpion{wol}felzpo)} = minE|p]

) Yo(ry,mnly) function of 3 x number of electron coordinates (n)
Benefit:

p(r)  function of 3 coordinates

Drawback: functional E[p] is not known
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Kohn-Sham DFT

Kohn and Sham define a fictitious system of non-interacting particles with a
local potential that generates the same density as the density of the real fully-
interacting system:

p(r) = ZI%(r)P fdr @i () @;(r) = &
Elp] = E®lpdl = i

h ) ,
- 2 j dr ¢; (r) <— v v2> @;(r) + f dr Vet (1) p(T) +§j drdr’p|(:)f)157) +

Exinlp] Eextlp] Eylp]

Kohn-Sham equation

_ :> 1 , p(r')
min E[p] —=V? 4+ Voo (r) + f dr , @;(r) + €;¢;(r)
p 2 Ir —r'|
1x N-elgctron > N xone-electron equations \/
equation NOT KNOWN
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Finding Kohn-Sham orbitals ¢;
by iterative procedure

For a given (fixed) ionic configuration RV:

1. Solve KS equations for an initial or a previous density p:

p'(r) N 0Exc[p]
r—r|  p(r)

1
{——VZ + Vexe (1) + J dr’ |

5 }‘Pi(r) = €;¢;(r) ~—

2. Determine the updated density:

p()= p" (1)
P (1) = ) lpy ()12

3. Check if convergence is reached:

No: back to step 1
j dr|p™™ (r) — p(r)] < Threshold<

Yes: exit
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Basis set

1 p'(r)  8Ex[p]
—=-V2+V r+jdr’ + () = €;,;(r K ion
5 ext( ) Ir — rrl 5,0(1‘) (pl( ) l(pl( ) S equations
M
Discretization: @;(r) = Z ar gr(r) {gr(r)} = Basis set
k=1
Localized Nonlocal
GTOs PW 1\
aq aq WWN\
: : +  Atomic orbital-like + Ortogonal
= € + Few functions needed + Independent from
Ay ap + Analytic integration for atomic position

I+

many operators Naturally period
+ Optimal for regular grids - Many function needed
+ Finite extend

- Non-orthogonal

- Linear dependences for large basis set
-  Complicated to generate

- Basis set superposition error
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Gaussian and Plane Waves method (GPW)

Atom-centered + Auxiliary
Gaussian-type basis Plane-wave basis
M Ecut
-(r)zz:a (r) r z—z Gexp[iG - r
Pi k p(r) 70 p(G)exp[iG - r]

k=1 G=0

CP2K can scale linearly
with the system size —G% < E_y

Fast Fourier Trasform

(FFT)

Real space Reciprocal (G) space
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Biological system sizes

Largest systems investigated at full QM level S 10,000 atoms

Typical biological system sizes >> 10,000 atoms

Multiscale approach: QM/MM

Combining different levels of theory and resolutions
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QM/MM Approach

The system is separated into two parts:

A small QM part comprises the
chemically/photophysically active
region treated by computationally

demanding electronic structure
methods.

QM/MM Interface

The remainder MVl part is
described efficiently at a lower
level of theory by classical force
fields.
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