
Message Passing

Programming
Tips and tricks

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/

Aims

• To write correct MPI programs

- that are portable to many systems

- that are efficient

- that are easy to maintain

4

Common problems in MPI
• Assuming MPI_Send is asynchronous

• Data sizes

• Non-portability

• Programs with specific process counts

• Not calling collectives collectively

• Incorrect use of non-blocking

• Sending lots of small messages

• Array allocation issues in C

• Array syntax issues in Fortran

• Code readability

• Debugging problems

5

Assuming MPI_Send is asynchronous

• Potential deadlock
• you may be assuming that MPI_Send is asynchronous

• it often is buffered for small messages

• but threshold will vary with implementation

• you code may run on one machine and deadlock on another

• correct code will run with all MPI_Send calls replaced by
MPI_Ssend

• Buffer space
• cannot assume that there will be space for MPI_Bsend

• default buffer space may be zero!

• be sure to use MPI_Buffer_attach

• some advice in MPI standard regarding required size

• allow for space for message headers: MPI_BSEND_OVERHEAD

6

Data Sizes

• Be careful of data sizes or layout
- use runtime enquiry functions for Fortran types

- be careful of compiler-dependent padding for structures

• Do not use magic compiler flags to change precision!
cc –convert-floats-to-doubles *.c

• Changing precision
- when changing from, say, float to double, must change all the MPI

types from MPI_FLOAT to MPI_DOUBLE as well

• Easiest to achieve with an include file
- e.g. every routine includes precision.h

7

Changing Precision: C

• Define a header file called, e.g. precision.h

- typedef float RealNumber

- #define MPI_REALNUMBER MPI_FLOAT

• Include in every function
- #include “precision.h”

- ...

- RealNumber x;

- MPI_Routine(&x, MPI_REALNUMBER, ...);

• Global change of precision now easy
- edit 2 lines in one file: float -> double, MPI_FLOAT -> MPI_DOUBLE

8

Changing Precision: Fortran

• Define a module called, e.g., precision

- integer, parameter :: REALNUMBER=kind(1.0e0)

- integer, parameter :: MPI_REALNUMBER = MPI_REAL

• Use in every subroutine
- use precision

- ...

- REAL(kind=REALNUMBER):: x

- call MPI_ROUTINE(x, MPI_REALNUMBER, ...)

• Global change of precision now easy
- change 1.0e0 -> 1.0d0, MPI_REAL -> MPI_DOUBLE_PRECISION

9

Non-portability

• Correct C code should compile correctly with any C compiler

• Correct MPI code should also run correctly with any MPI library

• Run on more than one machine

- assuming the MPI libraries are different

- many parallel clusters will use the same open-source MPI

• e.g. OpenMPI or MPICH2

• running on two different HPC systems may not be a good test

• More than one implementation on same machine

- e.g. run using both MPICH2 and OpenMPI on your laptop

- very useful test, and can give interesting performance numbers

• More than one compiler
- user@cluster$ module switch mpich2-gcc mpich2-intel

10

Code Readability

• Adding MPI can destroy a code

- would like to maintain a serial version

- i.e. can compile and run identical code without an MPI library

- not simply running MPI code with P=1!

• Need to separate off communications routines

- put them all in a separate file

- provide a dummy library for the serial code

- no explicit reference to MPI in main code

11

Example: Initialisation

! parallel routine

subroutine par_begin(size, procid)

implicit none

integer :: size, procid

include "mpif.h"

call mpi_init(ierr)

call mpi_comm_size(MPI_COMM_WORLD, size, ierr)

call mpi_comm_rank(MPI_COMM_WORLD, procid, ierr)

procid = procid + 1

end subroutine par_begin

! dummy routine for serial machine

subroutine par_begin(size, procid)

implicit none

integer :: size, procid

size = 1

procid = 1

end subroutine par_begin

12

Example: Global Sum

! parallel routine

subroutine par_dsum(dval)

implicit none

include "mpif.h"

double precision :: dval, dtmp

call mpi_allreduce(dval, dtmp, 1, MPI_DOUBLE_PRECISION, &

MPI_SUM, comm, ierr)

dval = dtmp

end subroutine par_dsum

! dummy routine for serial machine

subroutine par_dsum(dval)

implicit none

double precision dval

end subroutine par_dsum

13

Example Makefile

SEQSRC= \

demparams.f90 demrand.f90 demcoord.f90 demhalo.f90 \

demforce.f90 demlink.f90 demcell.f90 dempos.f90

demons.f90

MPISRC= \

demparallel.f90 \

demcomms.f90

FAKESRC= \

demfakepar.f90 \

demfakecomms.f90

#PARSRC=$(FAKESRC)

PARSRC=$(MPISRC)

14

Advantages of Comms Library

• Can compile serial program from same source

- makes parallel code more readable

• Enables code to be ported to other libraries

- more efficient but less versatile routines may exist

- e.g. Cray-specific SHMEM library

- can even choose to only port a subset of the routines

• Library can be optimised for different MPIs

- e.g. choose the fastest send (Ssend, Send, Bsend?)

15

Not calling collectives correctly

• Collectives must be called by all processes in communicator

- this will not work correctly on more than a single process

if (rank == 0) MPI_Bcast(x, 10, MPI_INT, 0, MPI_COMM_WORLD);

- an Allreduce called like this would deadlock

• Compute everything everywhere

- e.g. use routines such as Allreduce in preference to Reduce

- perhaps the value only really needs to be know on the master

• but using Allreduce makes things simpler

• no serious performance implications

16

Error checking and reductions

// Check for valid results

MPI_Reduce(&partial, &sum,

1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Bcast(&sum, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);

if (sum < 0)

{

if (rank == 0) printf("Error: sum = %f\n", sum)

MPI_Finalize();

}

• Do not use reduce + broadcast!

- use allreduce

17

Sending lots of small messages

for (j=0; j < N; j++)

{

MPI_Send(&x[0][j], 1, MPI_INT, dest, 0, comm);

}

• Send a single message of size N

MPI_Send(&x[0][0], N, MPI_INT, dest, 0, comm);

• Use a derived type, e.g. a vector, for equivalent loop over i

MPI_Send(&x[0][0], 1, my_mpi_vector, dest, 0, comm);

18

Programs with specific process counts

• Do not write code like:

if (rank == 0) {

for (i=1; i <= N/4; i++)

pi = pi + 1.0/(1.0 + pow((((double)i)-0.5)/((double) N),2.0));

} else if (rank == 1)

for (i=N/4+1; i <= N/2; i++)

pi = pi + 1.0/(1.0 + pow((((double)i)-0.5)/((double) N),2.0));

} else ...

• Often easiest to make P a compile-time constant

- may not seem elegant but can make coding much easier

• e.g. definition of array bounds

- put definition in an include file and check at runtime that size = P !!

- a clever Makefile can reduce the need for recompilation

• only recompile routines that define arrays rather than use them

19

Incorrect use of non-blocking

if (rank == 0) {

for (i=1; i < size; i++) {

MPI_Issend(x, 10, MPI_INT, i, 0, comm, &request);

}

} else MPI_Irecv(x, 10, MPI_INT, 0, 0, comm, &request);

// now start computation

• Need multiple requests on rank 0

- and they must be waited on at some later point

• Why use non-blocking here at all?

- avoid complication unless this is performance critical

20

Debugging

• Parallel debugging can be hard

• Don’t assume it’s a parallel bug!

- run the serial code first

- then the parallel code with P=1

- then on a small number of processes …

• Writing output to separate files can be useful

- e.g. log.00, log.01, log.02, …. for ranks 0, 1, 2, ...

- need some way easily to switch this on and off

• Some parallel debuggers exist

- Allinea DDT is becoming more common across the board

- a commercial product

- debuggers can powerful tools but also very complicated

21

General Debugging

• People seem to write programs DELIBERATELY to make

them impossible to debug!

- my favourite: the silent program

- “my program doesn’t work”

$ mpirun –n 6 ./program.exe

$ SEGV core dumped

- where did this crash?

- did it run for 1 second? 1 hour? in a batch job this may not be

obvious

- did it even start at all?

Why don’t people write to the screen!!!

22

Program should output like this

$ mprun –np 6 ./program.exe

Program running on 6 processes

Reading input file input.dat …

… done

Broadcasting data …

… done

rank 0: x = 3

rank 1: x = 5

etc etc

Starting iterative loop

iteration 100

iteration 200

finished after 236 iterations

writing output file output.dat …

… done

rank 0: finished

rank 1: finished

…

Program finished

23

Typical mistakes

• Don’t write raw numbers to the screen!
- what does this mean?

$ mprun –np 6 ./program.exe

1 3 5.6

3 9 8.37

- programmer has written
$ printf(“%d %d %f\n”, rank, j, x);

$ write(*,*) rank, j, x

• Takes an extra 5 seconds to type:
$ printf(“rank, j, x: %d %d %f\n”, rank, j, x);

$ write(*,*) ‘rank, j, x: ‘, rank, j, x

- and will save you HOURS of debugging time

• Why oh why do people write raw numbers?!?!

24

Common mistake

• There was a bug, but I changed something ...

- and it now works (but I don’t know why)

• All is OK!

• No!

- there is a bug

- you MUST find it

- if not, it will come back later to bite you HARD

• Debugging is an experimental science

- start with the serial code

- then P = 1

- then a small process count ...

25

Verification: Is My Code Working?

• Should the output be identical for any P?
- very hard to accomplish in practice due to rounding errors

• may have to look hard to see differences in the last few digits

- typically, results vary slightly with number of processes

- need some way of quantifying the differences from serial code

- and some definition of “acceptable”

• What about the same code for fixed P?
- identical output for two runs on same number of processes?

- should be achievable with some care

• not in specific cases like dynamic task farms

• possible problems with global sums

• MPI doesn’t require reproducibility, but most implementations are

- without this, debugging is almost impossible

26

Optimisation

• Keep running your code

- on a number of input data sets

- with a range of MPI processes

• If scaling is poor

- find out what parallel routines are the bottlenecks

- again, much easier with a separate comms library

• If performance is poor

- work on the serial code

- return to parallel issues later on

27

Fortran array syntax

• MPI derived types enable strided data to be sent/received

- no explicit copy in/out required

• For Fortran

- why not use Fortran array syntax?

• Some subtleties for non-blocking operations

28

Non-blocking operations

• What is wrong with this code?
allocate(buf(n))

call MPI_Issend(buf, n,)

deallocate(buf)

• Non-blocking send may still be ongoing at deallocation

- code could crash or give unpredictable behaviour

- only safe to deallocate the memory after the matching wait

• Identical issues in C using malloc and free

- however, the problem arises in a more subtle way in Fortran

- due to its more sophisticated array handling

29

Fortran array syntax

real, dimension(m,n) :: array

call MPI_Issend(array(1,1:n), n, MPI_REAL, ...)

...

• Looks ok but compiler will probably do:

allocate buf(n)

buf(1:n) = array(1,1:n)

call MPI_Issend(buf, n, MPI_REAL, ...)

array(1,1:n) = buf(1:n)

deallocate(buf)

- so buf may not exist when message is sent

- issue even more severe for non-blocking receive

30

Solutions

• Note this only an issue for non-blocking operations

- e.g. can do normal blocking send and receive using array syntax

• Advice

- avoid array syntax, even for contiguous sections (e.g. columns)

call MPI_Issend(array(1,1), m, ...)

- rather than

call MPI_Issend(array(1:m,1), m, ...)

• Derived datatypes (e.g. vectors) for non-contiguous rows

call MPI_Issend(array(1,1), 1, rowtype, ...)

31

Array allocation issues with C

• Data is contiguous in memory

- different conventions in C and Fortran

- for statically allocated C arrays x == &x[0][0]

32

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

5

13

2

6

10

14

3

7

11

15

4

8

12

16

93

C: x[4][4] F: x(4,4)

1 5 132 6 10 143 7 11 154 8 12 169

C: x[16] F: x(16)

i

j

Aside: Dynamic Arrays in C

• Data non-contiguous, and x != &x[0][0]

- cannot use regular templates such as vector datatypes

- cannot pass x to any MPI routine

33

float **x = (float **) malloc(4, sizeof(float *));

for (i=0; i < 4; i++)

{

x[i] = (float *) malloc(4, sizeof(float));

}

1

5
13

2

6

10

14

3

7

11

15

4

8

12

16

9

x

x[0]x[1] x[3]x[2]

Arralloc

• Data is now contiguous, but still x != &x[0][0]

- can now use regular template such as vector datatype

- must pass &x[0][0] (start of contiguous data) to MPI routines

- see MPP-arralloc.tar for example of use in practice

• Clearest to use always use &x[i][j] syntax

- correct for both static and (contiguously allocated) dynamic arrays

34

float **x = (float **) arralloc(sizeof(float), 2, 4, 4);

/* do some work */

free((void *) x);

1 5 132 6 103 7 114 8 129x x[0]x[1] x[3]x[2]

Conclusions

• Run on a variety of machines

• Keep it simple

• Maintain a serial version

• Don’t assume all bugs are parallel bugs

• Find a debugger you like (good luck to you)

35

