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Aims

• To write correct MPI programs

- that are portable to many systems

- that are efficient

- that are easy to maintain
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Common problems in MPI
• Assuming MPI_Send is asynchronous

• Data sizes

• Non-portability

• Programs with specific process counts

• Not calling collectives collectively

• Incorrect use of non-blocking

• Sending lots of small messages

• Array allocation issues in C

• Array syntax issues in Fortran

• Code readability

• Debugging problems
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Assuming MPI_Send is asynchronous

• Potential deadlock
• you may be assuming that MPI_Send is asynchronous

• it often is buffered for small messages

• but threshold will vary with implementation

• you code may run on one machine and deadlock on another

• correct code will run with all MPI_Send calls replaced by 
MPI_Ssend

• Buffer space
• cannot assume that there will be space for MPI_Bsend

• default buffer space may be zero!

• be sure to use MPI_Buffer_attach

• some advice in MPI standard regarding required size

• allow for space for message headers: MPI_BSEND_OVERHEAD
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Data Sizes

• Be careful of data sizes or layout
- use runtime enquiry functions for Fortran types

- be careful of compiler-dependent padding for structures

• Do not use magic compiler flags to change precision!
cc –convert-floats-to-doubles *.c

• Changing precision
- when changing from, say, float to double, must change all the MPI 

types from MPI_FLOAT to MPI_DOUBLE as well

• Easiest to achieve with an include file
- e.g. every routine includes precision.h
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Changing Precision: C

• Define a header file called, e.g. precision.h

- typedef float RealNumber

- #define MPI_REALNUMBER MPI_FLOAT

• Include in every function
- #include “precision.h”

- ...

- RealNumber x;

- MPI_Routine(&x, MPI_REALNUMBER, ...);

• Global change of precision now easy
- edit 2 lines in one file: float -> double, MPI_FLOAT -> MPI_DOUBLE
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Changing Precision: Fortran

• Define a module called, e.g., precision

- integer, parameter :: REALNUMBER=kind(1.0e0)

- integer, parameter :: MPI_REALNUMBER = MPI_REAL

• Use in every subroutine
- use precision

- ...

- REAL(kind=REALNUMBER):: x

- call MPI_ROUTINE(x, MPI_REALNUMBER, ...)

• Global change of precision now easy
- change 1.0e0 -> 1.0d0, MPI_REAL -> MPI_DOUBLE_PRECISION
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Non-portability

• Correct C code should compile correctly with any C compiler

• Correct MPI code should also run correctly with any MPI library

• Run on more than one machine

- assuming the MPI libraries are different

- many parallel clusters will use the same open-source MPI

• e.g. OpenMPI or MPICH2

• running on two different HPC systems may not be a good test

• More than one implementation on same machine

- e.g. run using both MPICH2 and OpenMPI on your laptop

- very useful test, and can give interesting performance numbers

• More than one compiler
- user@cluster$ module switch mpich2-gcc mpich2-intel
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Code Readability

• Adding MPI can destroy a code

- would like to maintain a serial version

- i.e. can compile and run identical code without an MPI library

- not simply running MPI code with P=1!

• Need to separate off communications routines

- put them all in a separate file

- provide a dummy library for the serial code

- no explicit reference to MPI in main code
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Example: Initialisation

! parallel routine

subroutine par_begin(size, procid)

implicit none

integer :: size, procid

include "mpif.h"

call mpi_init(ierr)

call mpi_comm_size(MPI_COMM_WORLD, size, ierr)

call mpi_comm_rank(MPI_COMM_WORLD, procid, ierr)

procid = procid + 1

end subroutine par_begin

! dummy routine for serial machine

subroutine par_begin(size, procid)

implicit none

integer :: size, procid

size = 1

procid = 1

end subroutine par_begin
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Example: Global Sum

! parallel routine

subroutine par_dsum(dval)

implicit none

include "mpif.h"

double precision :: dval, dtmp

call mpi_allreduce(dval, dtmp, 1, MPI_DOUBLE_PRECISION, &

MPI_SUM, comm, ierr)

dval = dtmp

end subroutine par_dsum

! dummy routine for serial machine

subroutine par_dsum(dval)

implicit none

double precision dval

end subroutine par_dsum
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Example Makefile

SEQSRC= \

demparams.f90 demrand.f90 demcoord.f90 demhalo.f90 \

demforce.f90 demlink.f90 demcell.f90 dempos.f90 

demons.f90

MPISRC= \

demparallel.f90 \

demcomms.f90

FAKESRC= \

demfakepar.f90 \

demfakecomms.f90

#PARSRC=$(FAKESRC)

PARSRC=$(MPISRC)
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Advantages of Comms Library

• Can compile serial program from same source

- makes parallel code more readable

• Enables code to be ported to other libraries

- more efficient but less versatile routines may exist

- e.g. Cray-specific SHMEM library

- can even choose to only port a subset of the routines

• Library can be optimised for different MPIs

- e.g. choose the fastest send (Ssend, Send, Bsend?)
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Not calling collectives correctly

• Collectives must be called by all processes in communicator

- this will not work correctly on more than a single process

if (rank == 0) MPI_Bcast(x, 10, MPI_INT, 0, MPI_COMM_WORLD);

- an Allreduce called like this would deadlock

• Compute everything everywhere

- e.g. use routines such as Allreduce in preference to Reduce

- perhaps the value only really needs to be know on the master

• but using Allreduce makes things simpler

• no serious performance implications
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Error checking and reductions

// Check for valid results

MPI_Reduce(&partial, &sum,

1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Bcast(&sum, 1, MPI_FLOAT, 0, MPI_COMM_WORLD);

if (sum < 0)

{

if (rank == 0) printf("Error: sum = %f\n", sum)

MPI_Finalize();

}

• Do not use reduce + broadcast!

- use allreduce
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Sending lots of small messages

for (j=0; j < N; j++)

{

MPI_Send(&x[0][j], 1, MPI_INT, dest, 0, comm);

}

• Send a single message of size N

MPI_Send(&x[0][0], N, MPI_INT, dest, 0, comm);

• Use a derived type, e.g. a vector, for equivalent loop over i

MPI_Send(&x[0][0], 1, my_mpi_vector, dest, 0, comm);
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Programs with specific process counts

• Do not write code like:

if (rank == 0) {

for (i=1; i <= N/4; i++)

pi = pi + 1.0/(1.0 + pow((((double)i)-0.5)/((double) N),2.0));

} else if (rank == 1)

for (i=N/4+1; i <= N/2; i++)

pi = pi + 1.0/(1.0 + pow((((double)i)-0.5)/((double) N),2.0));

} else ...

• Often easiest to make P a compile-time constant

- may not seem elegant but can make coding much easier

• e.g. definition of array bounds

- put definition in an include file and check at runtime that size = P !!

- a clever Makefile can reduce the need for recompilation

• only recompile routines that define arrays rather than use them
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Incorrect use of non-blocking

if (rank == 0) {

for (i=1; i < size; i++) {

MPI_Issend(x, 10, MPI_INT, i, 0, comm, &request);

}

} else MPI_Irecv(x, 10, MPI_INT, 0, 0, comm, &request);

// now start computation

• Need multiple requests on rank 0

- and they must be waited on at some later point

• Why use non-blocking here at all?

- avoid complication unless this is performance critical

20



Debugging

• Parallel debugging can be hard

• Don’t assume it’s a parallel bug!

- run the serial code first

- then the parallel code with P=1

- then on a small number of processes …

• Writing output to separate files can be useful

- e.g. log.00, log.01, log.02, …. for ranks 0, 1, 2, ...

- need some way easily to switch this on and off

• Some parallel debuggers exist

- Allinea DDT is becoming more common across the board

- a commercial product

- debuggers can powerful tools but also very complicated
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General Debugging

• People seem to write programs DELIBERATELY to make 

them impossible to debug!

- my favourite: the silent program

- “my program doesn’t work”

$ mpirun –n 6 ./program.exe

$ SEGV core dumped

- where did this crash?

- did it run for 1 second? 1 hour? in a batch job this may not be 

obvious

- did it even start at all?

Why don’t people write to the screen!!!

22



Program should output like this

$ mprun –np 6 ./program.exe

Program running on 6 processes

Reading input file input.dat …

… done

Broadcasting data …

… done

rank 0: x = 3

rank 1: x = 5

etc etc

Starting iterative loop

iteration 100

iteration 200

finished after 236 iterations

writing output file output.dat …

… done

rank 0: finished

rank 1: finished

…

Program finished
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Typical mistakes

• Don’t write raw numbers to the screen!
- what does this mean?

$ mprun –np 6 ./program.exe

1 3 5.6

3 9 8.37

- programmer has written
$ printf(“%d %d %f\n”, rank, j, x);

$ write(*,*) rank, j, x

• Takes an extra 5 seconds to type:
$ printf(“rank, j, x: %d %d %f\n”, rank, j, x);

$ write(*,*) ‘rank, j, x: ‘, rank, j, x

- and will save you HOURS of debugging time

• Why oh why do people write raw numbers?!?!
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Common mistake

• There was a bug, but I changed something ...

- and it now works (but I don’t know why)

• All is OK!

• No!

- there is a bug

- you MUST find it

- if not, it will come back later to bite you HARD

• Debugging is an experimental science

- start with the serial code

- then P = 1

- then a small process count ...

25



Verification: Is My Code Working?

• Should the output be identical for any P?
- very hard to accomplish in practice due to rounding errors

• may have to look hard to see differences in the last few digits

- typically, results vary slightly with number of processes

- need some way of quantifying the differences from serial code

- and some definition of “acceptable”

• What about the same code for fixed P?
- identical output for two runs on same number of processes?

- should be achievable with some care

• not in specific cases like dynamic task farms

• possible problems with global sums

• MPI doesn’t require reproducibility, but most implementations are

- without this, debugging is almost impossible
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Optimisation

• Keep running your code

- on a number of input data sets

- with a range of MPI processes

• If scaling is poor

- find out what parallel routines are the bottlenecks

- again, much easier with a separate comms library

• If performance is poor

- work on the serial code

- return to parallel issues later on
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Fortran array syntax

• MPI derived types enable strided data to be sent/received

- no explicit copy in/out required

• For Fortran

- why not use Fortran array syntax?

• Some subtleties for non-blocking operations
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Non-blocking operations

• What is wrong with this code?
allocate(buf(n))

call MPI_Issend(buf, n, ....)

deallocate(buf)

• Non-blocking send may still be ongoing at deallocation

- code could crash or give unpredictable behaviour

- only safe to deallocate the memory after the matching wait

• Identical issues in C using malloc and free

- however, the problem arises in a more subtle way in Fortran

- due to its more sophisticated array handling
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Fortran array syntax

real, dimension(m,n) :: array

call MPI_Issend(array(1,1:n), n, MPI_REAL, ...)

...

• Looks ok but compiler will probably do:

allocate buf(n)

buf(1:n) = array(1,1:n)

call MPI_Issend(buf, n, MPI_REAL, ...)

array(1,1:n) = buf(1:n)

deallocate(buf)

- so buf may not exist when message is sent

- issue even more severe for non-blocking receive
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Solutions

• Note this only an issue for non-blocking operations

- e.g. can do normal blocking send and receive using array syntax

• Advice

- avoid array syntax, even for contiguous sections (e.g. columns)

call MPI_Issend(array(1,1), m, ...) 

- rather than

call MPI_Issend(array(1:m,1), m, ...)

• Derived datatypes (e.g. vectors) for non-contiguous rows

call MPI_Issend(array(1,1), 1, rowtype, ...)
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Array allocation issues with C 

• Data is contiguous in memory

- different conventions in C and Fortran

- for statically allocated C arrays x == &x[0][0]
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Aside: Dynamic Arrays in C

• Data non-contiguous, and x != &x[0][0]

- cannot use regular templates such as vector datatypes

- cannot pass x to any MPI routine
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float **x = (float **) malloc(4, sizeof(float *));

for (i=0; i < 4; i++)

{

x[i] = (float *) malloc(4, sizeof(float));

}
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Arralloc

• Data is now contiguous, but still x != &x[0][0]

- can now use regular template such as vector datatype

- must pass &x[0][0] (start of contiguous data) to MPI routines

- see MPP-arralloc.tar for example of use in practice

• Clearest to use always use &x[i][j] syntax 

- correct for both static and (contiguously allocated) dynamic arrays
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float **x = (float **) arralloc(sizeof(float), 2, 4, 4);

/* do some work */

free((void *) x);

1 5 132 6 103 7 114 8 129x x[0]x[1] x[3]x[2]



Conclusions

• Run on a variety of machines

• Keep it simple

• Maintain a serial version

• Don’t assume all bugs are parallel bugs

• Find a debugger you like (good luck to you)
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