
Performance metrics
How is my parallel code performing and scaling?
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Performance metrics

• Fundamental measurement is the runtime T

- we can vary the number of processes P or the problem size N

- N measures the amount of computation, e.g. number of grid points

• Speed up

- typically 

• Parallel efficiency

- typically 

• Serial efficiency

- typically 
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Scaling

• Scaling is how the performance of a parallel application 

changes as the number of processors is increased

• There are two different types of scaling:

- Strong Scaling – total problem size stays the same as the number 

of processors increases

- Weak Scaling – the problem size increases at the same rate as the 

number of processors, keeping the amount of work per processor 

the same

• Strong scaling is generally more useful and more difficult 

to achieve than weak scaling
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Strong scaling
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Weak scaling
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Modelling speedup

• A typical program has two categories of components

- inherently serial sections: can’t be run in parallel

- potentially parallel sections

• Classic examples of serial

- initialisation or file IO (in parallel just do it from a single process)

• In practice, “serial” includes all parallel overheads

- any operation that does not benefit from parallelisation

- this includes reduction operations, halo swapping, ...
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The serial section of code

“The performance improvement to be gained by parallelisation is limited 

by the proportion of the code which is serial”

Gene Amdahl, 1967
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Amdahl’s law

• Assume that a fraction, a, is completely serial

• Parallel runtime

- assuming parallel part is 100% efficient

• Parallel speedup

• We are fundamentally limited by the serial fraction

- For          , S = P as expected (i.e. efficiency = 100%)

- Otherwise, speedup limited by           for any P

• for                ; 1/0.1 = 10 therefore 10 times maximum speed up

• for ; S(N, 16) = 6.4, S(N, 1024) = 9.9
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Example
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Gustafson’s Law

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes 
less important
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Utilising Large Parallel Machines

• Assume parallel part scales with N, serial part constant

- i.e. parallel part is O(N), serial is O(1)

- time

- speedup

• Scale problem size with P, i.e. set N = P (weak scaling)

- speedup

- efficiency
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Gustafson’s Law

• If you can increase the amount of work done by each 

process / task, the serial component will not dominate

- increase the problem size N to maintain scaling

- this can be in terms of

• increasing the overall problem size

• adding extra complexity

• For instance,             : S(N, 16) = 6.4, S(N, 1024) = 9.9

- using strong scaling:

• S(16 N,     16)     = 14.5             E(16 N,     16)     = 0.91

• S(1024 N, 1024) = 921.7           E(1024 N, 1024) = 0.9001
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Analogy: Flying London to New York
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Buckingham Palace to Empire State

• By Jumbo Jet
- distance: 5600 km; speed: 700 kph

- time: 8 hours ?

• No!
- 1 hour by tube to Heathrow + 1 hour for check in etc.

- 1 hour immigration + 1 hour taxi downtown

- fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

• Triple the flight speed with Concorde to 2100 kph
- total journey time = 4 hours +  2 hours 40 mins  = 6.7 hours

- speedup of 1.8 not 3.0

• Amdahl’s law!
- a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

16



Flying London to Sydney
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Buckingham Palace to Sydney Opera

• By Jumbo Jet
- distance: 16800 km; speed: 700 kph; flight time; 24 hours

- serial overhead stays the same: total time: 4 + 24 = 28 hours

• Triple the flight speed
- total time = 4 hours + 8 hours = 12 hours

- speedup = 2.3 (as opposed to 1.8 for New York)

• Gustafson’s law!
- bigger problems scale better

- increase both distance (i.e. N) and max speed (i.e. P) by three

- maintain same balance: 4 “serial” + 8 “parallel”
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Plotting

• Think carefully whenever you plot data

- what am I trying to show with the graph?

- is it easy to interpret?

- can it be interpreted quantitatively?

• Default plotting options are rarely what you want

- default colours can be hard to read (e.g. yellow on white)

- default axis limits may not be sensible

- ...

• Test data

- MPI traffic model on multiple (24-core) nodes of ARCHER
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Hard to interpret small N data here
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log/log can make trends in data too similar
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Normalised data easier to compare
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• use single-node (24-core) performance as baseline here
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Efficiency plots can be useful too
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log/lin efficiency if many points at small P
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Don’t just accept the default options

• In this chart the x-axis doesn’t have a meaningful scale
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Summary

• A variety of considerations when parallelising code

- serial sections

- communications overheads 

- load balance

- ...

• Scaling is important

- the better a code scales the larger machine it can use efficiently
•

• Quantitative metrics exist to give you an indication of how 

well your code performs and scales

- important to plot them appropriately
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