
Performance metrics
How is my parallel code performing and scaling?

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/

Performance metrics

• Fundamental measurement is the runtime T

- we can vary the number of processes P or the problem size N

- N measures the amount of computation, e.g. number of grid points

• Speed up

- typically

• Parallel efficiency

- typically

• Serial efficiency

- typically

4

S N,P() =
T N,1()
T N,P()

E N,P() =
S N,P()
P

=
T N,1()
P T N,P()

E N() =
Tbest N()
T N,1()

S N,P() < P

E N,P() <1

E N() <=1

Scaling

• Scaling is how the performance of a parallel application

changes as the number of processors is increased

• There are two different types of scaling:

- Strong Scaling – total problem size stays the same as the number

of processors increases

- Weak Scaling – the problem size increases at the same rate as the

number of processors, keeping the amount of work per processor

the same

• Strong scaling is generally more useful and more difficult

to achieve than weak scaling

5

Strong scaling

6

0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
p

e
e

d
-u

p

No of processors

Speed-up vs No of processors

linear

actual

Weak scaling

7

0

2

4

6

8

10

12

14

16

18

20

1 n

Actual

Ideal

R
u
n
ti
m

e
 (

s
)

No. of processors

Modelling speedup

• A typical program has two categories of components

- inherently serial sections: can’t be run in parallel

- potentially parallel sections

• Classic examples of serial

- initialisation or file IO (in parallel just do it from a single process)

• In practice, “serial” includes all parallel overheads

- any operation that does not benefit from parallelisation

- this includes reduction operations, halo swapping, ...

8

The serial section of code

“The performance improvement to be gained by parallelisation is limited

by the proportion of the code which is serial”

Gene Amdahl, 1967

9

Amdahl’s law

• Assume that a fraction, a, is completely serial

• Parallel runtime

- assuming parallel part is 100% efficient

• Parallel speedup

• We are fundamentally limited by the serial fraction

- For , S = P as expected (i.e. efficiency = 100%)

- Otherwise, speedup limited by for any P

• for ; 1/0.1 = 10 therefore 10 times maximum speed up

• for ; S(N, 16) = 6.4, S(N, 1024) = 9.9

10

T N,P() =a T N,1() +
1-a() T N,1()

P

S N,P() =
T N,1()
T N,P()

=
P

aP+ 1-a()

a = 0

a = 0.1

1/a

a = 0.1

Example

11

Gustafson’s Law

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes
less important

12

Utilising Large Parallel Machines

• Assume parallel part scales with N, serial part constant

- i.e. parallel part is O(N), serial is O(1)

- time

- speedup

• Scale problem size with P, i.e. set N = P (weak scaling)

- speedup

- efficiency

13

E P,P() =
a

P
+ 1-a()

S P,P() =a + 1-a() P

S N,P() =
T N,1()
T N,P()

=
a + 1-a() N

a + 1-a()
N

P

() () ()

()
() ()

P

NT
T

PNTPNTPNT parallelserial

1,11
1,1

,,,

a
a

−
+=

+=

Gustafson’s Law

• If you can increase the amount of work done by each

process / task, the serial component will not dominate

- increase the problem size N to maintain scaling

- this can be in terms of

• increasing the overall problem size

• adding extra complexity

• For instance, : S(N, 16) = 6.4, S(N, 1024) = 9.9

- using strong scaling:

• S(16 N, 16) = 14.5 E(16 N, 16) = 0.91

• S(1024 N, 1024) = 921.7 E(1024 N, 1024) = 0.9001

14

a = 0.1

Analogy: Flying London to New York

15

Buckingham Palace to Empire State

• By Jumbo Jet
- distance: 5600 km; speed: 700 kph

- time: 8 hours ?

• No!
- 1 hour by tube to Heathrow + 1 hour for check in etc.

- 1 hour immigration + 1 hour taxi downtown

- fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

• Triple the flight speed with Concorde to 2100 kph
- total journey time = 4 hours + 2 hours 40 mins = 6.7 hours

- speedup of 1.8 not 3.0

• Amdahl’s law!
- a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

16

Flying London to Sydney

17

Buckingham Palace to Sydney Opera

• By Jumbo Jet
- distance: 16800 km; speed: 700 kph; flight time; 24 hours

- serial overhead stays the same: total time: 4 + 24 = 28 hours

• Triple the flight speed
- total time = 4 hours + 8 hours = 12 hours

- speedup = 2.3 (as opposed to 1.8 for New York)

• Gustafson’s law!
- bigger problems scale better

- increase both distance (i.e. N) and max speed (i.e. P) by three

- maintain same balance: 4 “serial” + 8 “parallel”

18

Plotting

• Think carefully whenever you plot data

- what am I trying to show with the graph?

- is it easy to interpret?

- can it be interpreted quantitatively?

• Default plotting options are rarely what you want

- default colours can be hard to read (e.g. yellow on white)

- default axis limits may not be sensible

- ...

• Test data

- MPI traffic model on multiple (24-core) nodes of ARCHER

19

Hard to interpret small N data here

20

0

100

200

300

400

500

600

700

0 50 100 150 200 250

T
im

e
 (

s
e
c
o

n
d

s
)

Processes

Large N

Small N

log/log can make trends in data too similar

21

1

10

100

1000

16 32 64 128 256 512

T
im

e
 (

s
e
c
o

n
d

s
)

Processes

Large N

Small N

Normalised data easier to compare

22

• use single-node (24-core) performance as baseline here

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Linear

Large N

Small N

Efficiency plots can be useful too

23

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

P
a
ra

ll
e
l

E
ff

ic
ie

n
c
y

Processes

Large N

Small N

log/lin efficiency if many points at small P

24

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 128 256

P
a
ra

ll
e
l

E
ff

ic
ie

n
c
y

Processes

Large N

Small N

Don’t just accept the default options

• In this chart the x-axis doesn’t have a meaningful scale

25

0

1

2

3

4

5

6

1 2 3 4 8

S
p

e
e
d

u
p

Nodes

Summary

• A variety of considerations when parallelising code

- serial sections

- communications overheads

- load balance

- ...

• Scaling is important

- the better a code scales the larger machine it can use efficiently
•

• Quantitative metrics exist to give you an indication of how

well your code performs and scales

- important to plot them appropriately

26

