

Implications of Exascale Hardware for Mesh Generation

09/06/2021

Supercomputing Science Case completed

Current state of the art

- Exascale hardware expected in the 2022-23 timeframe
- Mesh generators generally developed for single-user work stations
 - Interactive vs batch processing

09/06/2021 By Thomas Schanz - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30234789

El Capitan & Frontier: https://www.amd.com/en/products/exascale-era

Aurora: https://www.intel.co.uk/content/www/uk/en/highperformance-computing/supercomputing/exascale-computing.html

Current state of the art: Scale of parallelism

- Current machines approaching or exceeding $\mathcal{O}(10^6)$ threads of execution
 - ARCHER2: 750k cores, 1.5M threads
 - Order of magnitude more parallelism → Exascale¹
- Unlikely a mesh generator *needs* to run at this scale
- Possible mesh generator will be *forced* to run at this scale, or at least on this type of hardware
- Existing programs can exploit parallelism
 - Octree-like algorithms seem well-suited to parallel mesh generation, demonstrating scalability to $\mathcal{O}(10^5)$ threads *Ghisi et al. (2014)*

Fugaku: fujitsu.com

A64FX: fujitsu.com

[1] Parsons, M.; ELEMENT workshop 1

Current state of the art: Accelerators and performance portability

- Changing environment
 - Not just traditional simulation, ML/AI workloads
 - Need to support industrial and scientific users
- Accelerators are becoming the norm
 - All 3 US planned Exascale supercomputers GPU-accelerated
 - EU: LUMI (550 PF), Leonardo (248 PF) GPU-accelerated
 - Fugaku (Japan) bucks this trend
 - Successful co-design effort
- If running in-place, performance portability will be required
 - Similar to what has been seen in solver developments
- New hardware opportunities/challenges¹
 - Ray-tracing
 - Larger vector units
 - Vector scatter/gather operations
 - GEMM-type operations in hardware
 - Faster/higher BW memory, persistent fast memory
 - Chiplets and complex memory hierarchies
 - Support for low precision ML operations
 - Really exciting time to be working in HPC

[1] Parsons, M.; McIntosh-Smith, S.; Homölle, B.; Dubé, N.; ELEMENT workshop 1

Limitations

- Memory per core trending down
- Per core memory bandwidth also decreasing, favouring FLOPs over bandwidth (FLOP monsters)
 - HBM2 (e.g. A64FX) working in opposite direction, but limited capacity
- Underpopulating (i.e. not using all available cores on a CPU) can help with bandwidth
 - Reduced memory capacity will force distributed parallelism
- Mesh size may be a significant data handling issue
 - Need to generate in-place?
 - Need to generate on demand?
- Checkpointing may become necessary at scale
 - Single-user workstation focus means overlooked so far
 - Concerns over Mean-Time to Failure at scale
 - Tan et al. (2019) demonstrated use of NVRAM as a form of semi-persistent memory for AMR¹
 - Need to account for asymmetric performance

NEXTGenIO: www.nextgenio.eu

09/06/2021

Goals for Exascale

- We need to be able to generate meshes required by Exascale problems – both scale and quality
- The size means we may be forced to generate meshes on the Exascale machines
 - The use of parallelism may not be driven by time to mesh
 - Not suited to interactive use
- Heterogeneous architecture is expected to become the norm
 - We need to be able to use the hardware we have access to
 - Performance portability

Research agenda: Short term (1-2 years)

Mesh compression

- Facilitate movement between machines
- IO benefits through smaller data size
- Could we represent the mesh+geometry as a coarse (high-order) mesh + sequence of refinements?¹
 - Would ease generating the mesh on-demand at scale
 - Replicable refinements → independence of order

(Gargallo-Peiró, Ruiz-Gironés, Houzeaux & Roca, ICOSAHOM'18)

[1] Roca, X.; Meshing from CAD vision: curved adaption to geometry and solution; ELEMENT workshop 1; <u>https://epcced.github.io/ELEMENT/assets/css/slides/Slides_Roca.pdf</u>

09/06/2021

Research agenda: Short term (1-2 years)

Use of parallel programming frameworks

- Aids performance portability
- May still require (significant) rewrite¹
- Requires identification of a core kernel(s) to test *cf.* Babel Stream²
 - Definition of standard set of benchmarks
 - Input from industry, scientific use cases
 - Definition of key metrics: cells/s, cell quality, mesh accuracy, ...

[1] Eichstädt, J. et al.; Accelerating high-order mesh optimisation with an architecture-independent programming model; Comput. Phys. Comm. (2018)

[2] Babel Stream: <u>https://github.com/UoB-HPC/BabelStream</u>

Research agenda: Short term (1-2 years)

Assessing use/suitability of heterogeneous hardware

- Linked to performance portability
- What are the benefits of new hardware?
 - Accelerators/novel compute units
 - Deep memory hierarchies
- Do our algorithms require a rethink (answer is almost certainly yes)?

Research agenda: Medium term (5 years)

Evaluating meshing applications on Exascale hardware

- Short-term research overlaps early Exascale machines coming online
- Reasonable timeframe to begin testing the outcomes
 - Meshing for complex scientific/industrially relevant applications at Exascale
 - Can we efficiently exploit the available hardware?
 - Using metrics identified in the short term

Research agenda: Medium term (5 years)

Improving the efficiency of meshing workflows

- Exascale meshing must become first class citizens of the workflow
 - Must address IO and data management challenges
 - In-situ (de-)compression and verification of mesh
 - Marshalling data to/from compute nodes
- Robust "hands-off" mesh generation/adaptivity is a must!
 - One of the core points of CFD vision 2030

Research agenda: Long term (10 years)

Standardisation

- What has been found beneficial?
- Encourage reuse of optimised components
 - APIs mesh generation, adaptation
 - Data exchange formats (storage and in-memory)
- Interoperability MDAO is a significant use case for Exascale
 - Meshes for each "Discipline" need to be connected

Review progress

- Assess against other parts of the workflow
 - Demonstration of efficiency at Exascale
 - Actual experience with Exascale machines will uncover unforeseen problems

