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NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION is 
a series designed to provide texts and monographs for graduate students 
and researchers on a wide range of mathematical topics at the interface 
of computational science and numerical analysis.

George Em Karniadakis and Spencer Sherwin

Spectral methods have long been popular in direct and large eddy simulation 
of turbulent flows, but their use in areas with complex-geometry computational
domains has historically been much more limited. More recently the need to find
accurate solutions to the viscous flow equations around complex configurations
has led to the development of high-order discretisation procedures on unstruc-
tured meshes, which are also recognised as more efficient for solution of time-
dependent oscillatory solutions over long time periods. 

Here Karniadakis and Sherwin present a much-updated and expanded version 
of their successful first edition covering the recent and significant progress in
multi-domain spectral methods at both the fundamental and application level.
Containing over 50% new material, including discontinuous Galerkin methods,
non-tensorial nodal spectral element methods in simplex domains, and stabilisa-
tion and filtering techniques, this text aims to introduce a wider audience to the
use of spectral/hp element methods with particular emphasis on their application
to unstructured meshes. It provides a detailed explanation of the key concepts
underlying the methods along with practical examples of their derivation and
application, and is aimed at students, academics and practitioners in computa-
tional fluid mechanics, applied and numerical mathematics, computational
mechanics, aerospace and mechanical engineering and climate/ocean modelling.
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Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.
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Nektar++

(a) (b)
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Figure 4: Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3, 900. (b) Euler simulation
over a NACA0012 aerofoil at Ma1 = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80, 000.

where U = [⇢, ⇢u, ⇢v, ⇢w, E]> is the vector of conserved vari-
ables in terms of density ⇢, velocity (u1, u2, u3) = (u, v,w), E is
the specific total energy, and

F(U) =

2
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p + ⇢u2 ⇢uv ⇢uw
⇢uv ⇢v2 + p ⇢vw
⇢uw ⇢vw ⇢w2 + p

u(E + p) u(E + p) v(E + p)
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where p is the pressure. To close the system we need to specify
an equation of state, in this case the ideal gas law p = ⇢RT
where T is the temperature and R is the gas constant. For the
Euler equations, the tensor of viscous forces Fv(U) = 0, and for
Navier-Stokes

Fv(U) =

2
666666666666666664

0 0 0
⌧xx ⌧yx ⌧zx
⌧xy ⌧yy ⌧zy
⌧xz ⌧yz ⌧zz
A B C

3
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A = u⌧xx + v⌧xy + w⌧xz + k@xT,
B = u⌧yx + v⌧yy + w⌧yz + k@yT,
C = u⌧zx + v⌧zy + w⌧zz + k@zT

where in tensor notation the stress tensor ⌧xi x j = 2µ(@xi ui +

@xi u j �
1
3@xk uk�i j), µ is the dynamic viscosity calculated using

Sutherland’s law and k is the thermal conductivity.
To discretise these equations in space, we adopt an approach

which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by
utilising the variational form of the equations in order to ob-
tain the discontinuous Galerkin method. One of the key fea-
tures of Nektar++ is the ability to select a wide range of nu-
merical options, and to this end we support both discontinuous

Galerkin and flux reconstruction spatial discretisations, which
have various numerical equivalences [22] but may possess dif-
ferent performance characteristics. In the flux reconstruction
formulation, we instead use the equation in di↵erential form in
combination with correction functions which impose continuity
of fluxes between elements.

In either case, information is transferred between elements
by solving a one-dimensional Riemann problem at the interface
between two elements. For the non-viscous terms there is sup-
port for a wide variety of Riemann solvers, including an exact
solution or a number of appproximate solvers such as HLLC,
Roe and Lax-Friedrichs solvers [23]. For the viscous terms, we
utilise a local discontinuous Galerkin method (or the equivalent
flux reconstruction version). Various versions of the discontin-
uous Galerkin method which are available throughout the lit-
erature, mostly relating to the choices of modal functions and
quadrature points, can also be readily selected by setting appro-
priate options in the session file.

Given the complexity and highly nonlinear form of these
equations, we adopt a fully explicit formulation to discre-
tise the equations in time, allowing us to use any of the ex-
plicit timestepping algorithms implemented through the gen-
eral linear methods framework [16], including 2nd and 4th order
Runge-Kutta methods. Finally, in order to stabilise the flow
in the presence of discontinuities we utilise a shock capturing
technique which makes use of artificial viscosity to damp os-
cillations in the solution, in conjunction with a discontinuity
sensor adapted from the approach taken in [24] to decide where
the addition of artificial viscosity is needed.

Figure 4 shows representative results from compressible flow
simulations of a number of industrially-relevant test cases. We
first highlight two simulations which utilise the Navier-Stokes
equations. Fig. 4(a) demonstrates the three-dimensional ver-
sion of the compressible solver by investigating the flow over a
cylinder at Re = 3,900. In this figure we visualise isocontours
of the pressure field and colour the field according to the den-
sity ⇢. To demonstrate the shock capturing techniques available
in the code, Fig. 4(b) shows the results of an Euler simulation
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Figure 5: Contours of the magnitude of velocity in a periodic hill simulation at
Re = 2800.

for flow over a NACA0012 aerofoil at a farfield Mach number
Ma1 = 0.8 and a 1.5� angle of attack. The transonic mach
number of this flow leads to the development of a strong and
weak shock along the upper and lower surfaces of the wing re-
spectively. This figure shows isocontours of the mach number
where the presence of the shocks are clearly identified. Finally,
In Fig. 4(c), we visualise the temperature field from flow pass-
ing over a T106C low-pressure turbine blade at Re = 80,000
to highlight applications to high Reynolds number flow simula-
tions.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate nu-
merical schemes and high resolution of the domain is critical.
Moreover, any choice of scheme must be e�cient in order to ob-
tain results in computationally feasible time-scales. Tradition-
ally, highly resolved turbulence simulations, such as the Taylor-
Green vortex problem, lie firmly in the class of spectral meth-
ods. However, spectral methods typically lead to strong geom-
etry restrictions which limits the domain of interest to simple
shapes such as cuboids or cylinders.

Whilst spectral element methods may seem the ideal choice
for such simulations, particularly when the domain of interest
is geometrically complex, they can be more computationally
expensive in comparison to spectral methods. However, when
the domain of interest has a geometrically homogeneous com-
ponent – that is, the domain can be seen to be the tensor prod-
uct of a two-dimensional ‘complex’ part and a one-dimensional
segment – we can combine both the spectral element and tradi-
tional spectral methods to create a highly e�cient and spectrally
accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the
flow is periodic in both streamwise and spanwise directions.
This case is a well-established benchmark problem in the DNS
and LES communities [25], and is challenging to resolve due to
the smooth detachment of the fluid from the surface and recir-
culation region. Here we consider a Reynolds number of 2800,
normalised by the bulk velocity at the hill crest and the height
of the hill, with an appropriate body forcing term to drive the
flow over the periodic hill configuration.

The periodicity of this problem makes it an ideal candidate
for the hybrid technique described above. We therefore con-

struct a two-dimensional mesh of 3626 quadrilateral elements
at polynomial order P = 6, and exploit the domain symmetry
with a Fourier pseudospectral method consisting of 160 collo-
cation points in the spanwise direction to perform the simula-
tion. This yields a resolution of 20.9M degrees of freedom per
field variable and allows us to obtain excellent agreement with
the benchmark statistics.

4.3. Flow stability
In addition to direct numerical simulation of the full

non-linear incompressible Navier-Stokes equations, the
IncNavierStokesSolver supports global flow stability
analysis through the linearised Navier-Stokes equations with
respect to a steady or periodic base flow. This process identifies
whether a steady flow is susceptible to a fundamental change
of state when perturbed by an infinitesimal disturbance. The
linearisation takes the form

@u0

@t
+ (u0 · r)U + (U · r)u0 = �rp0 + ⌫r2u0

r · u0 = 0,

where U is the base flow and u0 is now the infinitesimal pertur-
bation. The time-independent base flow is computed through
evolving Equs. 9 to steady-state with appropriate boundary con-
ditions. For time-period base flows, the flow is sampled at reg-
ular intervals and interpolated.

The linear evolution of a perturbation under Equs. 10 can be
expressed as

u0(t) = A(t)u00

for some initial state u00, and we seek, for some arbitrary time
T, the dominant eigenvalues and eigenmodes of the operator
A(T ), which are solutions to the equation

A(T )ũ j = � jũ j.

The sign of the leading eigenvalues � j are used to establish the
global stability of the flow. An iterative Arnoldi method [26]
is applied to a discretisation M of A(T ). Repeated actions
of M are applied to the initial state u0 using the same time-
integration code as for the non-linear equations [27]. The re-
sulting sequence of vectors spans a Krylov subspace of M and,
through a partial Hessenberg reduction, the leading eigenval-
ues and eigenvectors can be e�ciently determined. The same
approach can be applied to the adjoint form of the linearised
Navier-Stokes evolution operatorA⇤ to examine the receptivity
of the flow and, in combination with the direct mode, identify
the sensitivity of the flow to base flow modification and local
feedback. The direct and adjoint methods can also be combined
to identify convective instabilities over di↵erent time horizons
⌧ in a flow by computing the leading eigenmodes of (A⇤A)(⌧).
This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we
use the example of two-dimensional flow past a circular cylin-
der at Re = 42, just below the critical Reynolds number for
the onset of the Bénard-von Kármán vortex street. This is a
well-established test case for which significant analysis is avail-
able in the literature. We show in Fig. 6 the leading eigen-
modes for the direct (A) and adjoint (A⇤) linear operators for
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
t = 8.5 s; (d) t = 12.5 s;

substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations

�

 
Cm
@u
@t
+ Iion

!
= r · �ru,

where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by

@U
@t
+H@U
@x
= S (14)

U =
"
U
A

#
, H =

"
U A
⇢ @p
@A U

#
, S =

"
0

1
⇢

⇣
f
A � s

⌘
#

in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
⌘
, � =

p
⇡hE

(1 � ⌫2)A0
(15)

where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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Figure 9: Geometry used for the simulation. Insets show how flow and pressure
vary with time and di↵erent locations in the geometry.

thickness and ⌫ is the Poisson’s ratio. Other more elaborate
pressure - area relationships are currently being implemented
into the framework. Application of Riemann’s method of char-
acteristics to Equations 14 and 15 indicates that velocity and
area are propagated through the system by forward and back-
ward travelling waves. These waves are reflected within the
network by appropriate treatment of interfaces and boundaries
(see for example [34, 35]). The final system of equations are
discretised in the Nektar++ framework using a discontinuous
Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry was created by extracting the centreline directly from
a 3D segmentation of a carotid bifurcation (the extracted cen-
treline with the segmented geometry overlaid is shown in Fig-
ure 9). At the inlet a half-sinusoidal flow profile was applied
during the systolic phase, whist during the diastolic phase a no-
flow condition was applied. Although this profile is not rep-
resentative of the carotid wave, it is useful for demonstrating
essential dynamics of the system e.g. reflection of backward
travelling waves only during the diastolic phase. At the outflow
RCR boundary conditions were utilised [35]. These boundary
conditions take into account the peripheral resistance and com-
pliance of the vasculature. The pressure and flow results are
shown in Figure 9. The insets demonstrate that the pressure
needs about 4 cycles to reach a periodic state.

To conclude this section, we illustrate the flexibility of the
software in combining two solvers to understand mass trans-
port in the aorta. We consider the simulation of blood-flow
through a pair of intercostal branches in the decending aorta.
The three-dimensional geometry is derived from CT scans and
is meshed using a combination of tetraheda and prismatic el-
ements. Prisms are used to better capture the boundary layer
close to the wall, while tetrahedra fill the remaining interior of
the domain. The embedded manifold discretisation code can
be used to compute boundary conditions for three-dimensional
simulations where the complexity of the geometry precludes the
use of analytic conditions.

The flow is modelled using the incompressible Navier-Stokes
equations (see Section 4.1). In this case, the inlet flow profile
f in Equ. 9 is the solution of the Poisson problem, computed
using the ADRSolver, on the two-dimensional inlet boundary

surface for a prescribed body force, as shown in Fig. 10(a).
The resulting profile is imposed on the three-dimensional flow
problem as illustrated. The steady-state velocity field from the
flow simulation at Reynolds number Re = 300 is shown in
Fig. 10(b). A single boundary layer of prismatic elements is
used for this simulation and both the prismatic and tetrahedral
elements use a polynomial expansion order of P = 4. This is
su�cient to capture the boundary layer at the walls.

We now solve the advection-di↵usion equation,

r · (�Drc + cu) = 0,

to model transport of oxygen along the arterial wall. Here, c
is the concentration and u is the steady-state flow solution ob-
tained previously. D = 1/Pe is the di↵usivity of the species
considered (Pe = 7.5 ⇥ 105 for oxygen). For most of the do-
main, the non-dimensional concentration remains constant at
c = 1. However, a particularly high gradient in concentration
forms at the wall. It is this gradient which is of particular inter-
est and needs to be captured accurately. The existing mesh used
for the flow simulation is unable to resolve the gradients close
to the wall. We therefore refine the boundary layer in the wall-
normal direction using element heights following a geometric
progression. To reduce computational cost, we also exploit the
spectral/hp discretisation and reduce the polynomial order of
the prisms in the directions parallel to the wall, since the con-
centration shows negligible variation in these directions. Fur-
thermore, the domain-interior tetrahedra may also be discarded
and a dirichlet c = 1 condition imposed on the resulting interior
prism boundary.

Fig. 10(c) shows the resulting concentration gradient field on
the surface of the arterial wall. Regions of low concentration
gradient are observed upstream of the branches, while high con-
centration gradients are observed downstream. Fig.10(d) shows
close-ups of the branches to illustrate this.

5. Discussion & Future Directions

The Nektar++ framework provides a feature-rich platform
with which to develop numerical methods and solvers in the
context of high-order finite element methods. It has been de-
signed in such a way that the libraries reflect the mathematical
abstractions of the method, to simplify uptake for new users,
as well as being written in a modular way to improve the ro-
bustness of the code, minimise duplication of functionality and
promote sustainability.

Development
The development of a complex and extensive software

project such as Nektar++ necessitates the adoption of certain
development practices to enable developers to easily write new
code for their features without breaking the code for other peo-
ple. The code is managed using the git distributed version
control system [36] due to its performance, enhanced support
for branching, as well as supporting o↵-line development. All
development is performed in branches and only after rigor-
ous multi-architecture testing and internal peer-review is new
code merged into the main codebase, thereby always maintain-
ing a stable distribution. Any new bugs or feature requests
are tracked using the Trac issue-management system, which
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Figure 7: Solitary wave impinging a cylinder. (a) t = 4.5 s; (b) t = 5.5 s; (c)
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substrate modification to restore normal rhythm is often partic-
ularly challenging and may benefit from insight derived from
computer modelling.

The CardiacEPSolver models the conduction process us-
ing the monodomain equations
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where the Iion term captures the complex movement of ions
in and out of cells and is itself modelled as a set of ordinary
di↵erential equations. Additionally, � captures the potentially
heterogeneous and anisotropic nature of the tissue which af-
fects the speed of electrical propagation. While full 3D simula-
tions of myocardium are traditionally performed, the left atrium
is su�ciently thin that it can be reasonably represented as a
two-dimensional manifold embedded in three dimensions and
solved at significantly reduced computational cost [32]. The
geometry of the left atrium is created through segmentation of
magnetic resonance images of the heart.

An example of a left atrium simulation is illustrated in Fig-
ure 8. Electrophysiological characteristics vary spatially, with
regions of scar and fibrosis more resistive to activation, re-

Figure 8: Illustrative simulation of a depolarising electrochemical wavefront
on a two-dimensional manifold representation of a human left atrium. Blue
areas denote regions of unexcited (polarised) tisue, while green denotes areas
of excited (depolarised) cells. The red areas highlight the wavefront.

sulting in more complex activation patterns. The geometry is
derived from segmented magnetic resonance imaging (MRI)
data, while tissue heterogeneity is prescribed based on late
gadolinium-enhanced MRI. A human atrial ionic model [33]
is used as the reactive term in the model and represents the ex-
changes of ions between the interior and exterior of the cell,
along with other cellular biophysics.

4.6. Biological flow
1D modelling of the vasculature (arterial network) represents

an insightful and e�cient tool for tackling problems encoun-
tered in arterial biomechanics as well as other engineering prob-
lems. In particular, 3D modelling of the vasculature is relatively
expensive. 1D modelling provides an alternative in which the
modelling assumptions provide a good balance between physi-
ological accuracy and computational e�ciency. To describe the
flow and pressure in this network we consider the conservation
of mass and momentum applied to an impermeable, deformable
tube filled with an incompressible fluid, the nonlinear system
of partial di↵erential equations presented in non-conservative
form is given by
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in which A is the Area (related to pressure), x is the axial coor-
dinate along the vessel, U(x, t) the axial velocity, P(x, t) is the
pressure in the tube, ⇢ is the density and finally f the frictional
force per unit length. The unknowns in equation 14 are u, A and
p; hence we must provide an explicit algebraic relationship to
close this system. Typically, closure is provided by an algebraic
relationship between A and p.

For a thin elastic tube this is given by

p = p0 + �
⇣p

A �
p

A0
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, � =
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⇡hE

(1 � ⌫2)A0
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where p0 is the external pressure, A0 is the initial cross-
sectional area, E is the Young’s modulus, h is the vessel wall
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3.3. REPROFILING ROLL HOOPS

• Another effect of the larger wake is an increased region of recirculating flow downstream of the

ramp leading to the decrease in rear surface pressure visible in Figure 3.6(b). This leads to a larger

discrepancy between front and rear static pressure further increasing pressure drag.

(a) (b)

Figure 3.6: (a) Comparison of total pressure 400 mm rearward of the vehicle trailing edge for CFD019
(right) and CFD059 (left). (b) Comparison of rear static presssure for CFD019 (left) and CFD059 (right).

Overall however, the ramp is the key addition in the search to move the balance rearward with the

substantial static pressure increase upstream of the ramp and beneficial effect of the ramp on the diffuser

producing double the amount of rear downforce generated by the initial design.

3.3 Reprofiling Roll Hoops

In an attempt to mitigate some of the drag penalty accrued by the addition of the ramp, the roll hoops

were to be re-profiled from their initially circular design, as highlighted in Figure 3.7.

(a)
(b)

Figure 3.7: Comparison of geometries for CFD059 and CFD060 showing the reprofiling of the roll hoops in
CFD060 (highlighted red).
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CHAPTER 3. AERODYNAMIC BALANCE MIGRATION OF THE BASELINE CAR

3.1 Diffuser Ramp Packer

The initial concept to generate more °CLr
involved the addition of a diffuser ramp packer, compared to

the initial design below in Figure 3.2. This involves moving the inlet to the diffuser tunnel rearwards
and smoothing the transition from the flat floor to the rear diffuser tunnel. As with all Venturi style
underbodies, it is beneficial to extend the length of the ’throat’ region, where flow velocity is at it’s highest,
to maximise downforce produced. This also has the effect of increasing the angle of the rear diffuser
tunnel which can be beneficial to floor performance if the steeper diffuser can maintain attached flow.
The smoothed transition to the rear diffuser tunnels is designed to minimise separation by removing the
sharper transition present in CFD019.

FIGURE 3.2. Comparison of Geometries for CFD019 (left) and CFD047 (right) showing the
alteration to the diffuser tunnels on CFD047 (highlighted red).

Many of these expectations are realised in the RANS outputted underbody static pressures, shown in
Figure 3.3 (a) overleaf. The extension of the ’throat’ section of the diffuser has lead to a large increase in
the region of minimum surface pressure on the underbody with the curvature of the ramp packer further
reducing the static pressure at the inlet to the rear diffuser tunnel. These two effects contribute to the 6
point increase in rear downforce (1 point = 0.01 °CL) shown in Table 3.1.

Table 3.1: Comparison of full-car force coefficients for CFD019 and CFD047

Case Notes CD °CL -CL f
-CLr

%-CL f
L/D

CFD019 Elemental RP1 Baseline Car 0.83 1.19 0.88 0.31 74.0 1.42
CFD047 As CFD019 with Diffuser Packer 0.85 1.25 0.89 0.37 70.8 1.48

Deltas + 0.02 + 0.06 + 0.01 +0.06 - 3.2% + 0.06

There was a very slight increase in drag coefficient recorded after the diffuser adjustments were
implemented. To determine the cause of this increased CD , regions of separation in the underbody were
highlighted in Figure 3.3 (b) overleaf and this revealed a region of separation present at the inboard lip of
the diffuser tunnel inlet. This is likely contributing to the increase in CD and may be leading to the loss of
some potential °CLr

however this small separation region is not entirely unexpected due to the increased

14

3.2. REAR RAMP

suction peak at the diffuser ramp packer. The benefit of the steeper diffuser angle enlarging the throat
section of the underbody is however much greater than the consequential separation that occurs in the
diffuser tunnel.

(a) (b)

Figure 3.3: (a) Comparison of underbody static presssure for CFD019 (bottom) and CFD047 (top). (b)
Regions of separation or near separation (V ∑ 0.3V1) on the underbody of CFD019 (bottom) and CFD047
(top).

3.2 Rear Ramp

While the redesign of the underbody led to a gain in rear downforce of 6 points, a gain of the order of an
additional 25 points is required in order to move the balance into the target window of 60%. Therefore
it was decided to add a ramp to the rearmost point of the baseline body geometry (case name CFD059),
highlighted in red below in Figure 3.4.

FIGURE 3.4. Comparison of geometries for CFD019 (right) and CFD059 (left) showing the
addition of a rear ramp in CFD059 (highlighted red).

The ramp was added to the initial geometry to be able to judge the benefits of the ramp in isolation
to those gained through the underbody redesign. The addition of the ramp was found to greatly aid

15

Design 2: +33% Downforce 

Design 3:   +270% Downforce 

5th order  
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High-order mesh generation

Boundary-Rep



Pre analysis stage in FE simulations

• Preparation of CAD models for mesh  
    generation is still the major bottleneck.  
• This is estimated to take about 80%  
    of the time invested in an analysis. 
• Mesh generation algorithms require 
     water tight geometries.  

Courtesy of Oubay Hassan, Swansea University

Cleaning 

• Very small curves and surfaces that will 
     cause excessive mesh refinement 

De-featuring 

• Dealing with complex objects that contains 
    multi-scale features it is often necessary 
    to manually remove small features



Meshing
Boundary layer meshing

Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

 φpq(ξ1,ξ2) = ψp(ξ1) ψq(ξ2)

ψp(ξ1)

ξ1

ξ2

ψq(ξ2)

p

q

p

qa

a

a a

 φpq(ξ1,ξ2) = hp(ξ1) hq(ξ2)

hp(ξ1)

ξ1

ξ2

hq(ξ2)

p

q

p

q

Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2



High-order mesh generation

•Starting point is typically a linear mesh 

•Have large elements  or smaller meshes for a given 

volume 

•For complex geometries we still require to larger 

meshes to capture relevant features.  

• In-situ adaptation could be useful. 

•  Require access to geometry representation/CAD  



Philosophy

3

CAD Flow solution

Single step process from CAD to flow solution 
As few user parameters as possible - automatic 

curvature refinement
Preserve CAD throughout

Linear mesh 
generation

High-order 
manipulation

Mesh 
optimisation 
+ correction

CFD / 
solvers

Meshing Pipeline
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ξ1

ξ2

x1

x2

xi  = fi
A(ξ1)

}

}xi  = fi
C(ξ1)

}xi  = fi
D(ξ2)

}
xi  = fi

B(ξ2)

ξ1

ξ2 χ
i
(ξ1,ξ2)

Figure 3.4 A general curved element can be described in terms of a series of parametric functions
fA(ξ1), fB(ξ2), fC(ξ1), and fD(ξ2). Representing these functions as a discrete expansion we can
construct an iso-parametric mapping χi(ξ1, ξ2) relating the standard region (ξ1, ξ2) to the deformed
region (x1, x2).

the hierarchical modal expansion. For example, a quadrilateral domain of the form shown
in figure 3.2(b) the mapping can be defined by equation (3.37).

We note that this simply involves the vertex modes of the modified hierarchical expansion
basis within a quadrilateral domain (see section 2.1.1). We could, therefore, have written
the expansion as

xi = χi(ξ1, ξ2) =
p=P1∑

p=0

q=P2∑

q=0

x̂i
pqφpq(ξ1, ξ2) (3.38)

where φpq = ψa
p (ξ1)ψa

q (ξ2) and x̂i
pq = 0 except for the vertex modes which have a value of

x̂i
00 = xA

i x̂i
P10 = xB

i x̂i
P1P2

= xC
i x̂i

0P2
= xD

i .

The construction of a mapping based upon the expansion modes in this form can be
extended to include curved sided regions using an isoparametric representation. In this
technique the geometry is represented with an expansion of the same form and polynomial
order as the unknown variables.

To describe a straight-sided region we needed only to know the values of the vertex
locations. To describe a curved region, however, requires more information. As illustrated
in figure 3.4, we typically expect to have a definition of a mapping of the shape of each edge
in terms of the local coordinates which we denote as fA

i (ξ1), fB
i (ξ2), fC

i (ξ1) and fD
i (ξ2). The

process of defining the mapping functions can be considered as part of the mesh generation
process, the discussion of which is in section 3.3.3.

Knowing the definition of the edges (or faces in three-dimensions) a mapping for a
curvilinear domains can be determined using the isoparametric form of equation (3.38)
to include more non-zero expansion coefficients than simply the vertex contributions. In
two-dimensions we wish to use the coefficient along each edge of the element, and in three-
dimensions we can use the face coefficients as well. Along each edge we therefore need to
approximate the shape mapping fi(ξ) if it is not already represented by a polynomial of

SpatialDomains

ξ1 (1)

ξ2 (2)

(3)

1

ξ1 (1)

ξ2 (2)

(3)

1

A B

CD
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where

u′
p =

P∑

q=0

uq
∂hq

∂ξ
(ξ)

∣∣∣∣
ξp

.

This is very significant when calculating non-linear terms such as the advection operator in
the Navier-Stokes equation. For example, to determine the value of the non-linear product

uδ(ξ)
∂uδ

∂ξ
(ξ)

at a point ξi we have:

uδ(ξi)
∂uδ

∂ξ
(ξi) =

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

uq
∂hq

∂ξ
(ξi)

)

=

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

u′
qhq(ξi)

)

.

Since hp(ξi) = δpi and hq(ξi) = δqi then

uδ(ξi)
∂uδ

∂ξ
(ξi) = uiu

′
i.

Finally, we can represent our nonlinear product in terms of an expansion of Lagrange poly-
nomials as

uδ(ξ)
∂uδ

∂ξ
(ξ) !

P∑

p=0

upu
′
php(ξ).

We note however that if uδ(ξ) is a polynomial of order P then the non-linear product

uδ(ξ)∂uδ

∂ξ (ξ) is a polynomial of order (2P − 1) and so it cannot be exactly represented by

the Lagrange polynomial expansion of order P . At the nodal points the coefficient upu′
p will

be identical to the value of uδ(ξp)∂uδ

∂ξ (ξp). Nevertheless, projecting the non-linear terms to
a lower polynomial order in this fashion can lead to aliasing errors as discussed in section
1.4.1.2.

Although this example is in one-dimension, the same properties apply in multiple di-
mensions provided the expansion can be represented by a tensor product of Lagrange poly-
nomials. Using the collapsed Cartesian coordinates systems described in section 2.2.1 it
is possible to represent any polynomial expansion as a tensor product of one-dimensional
Lagrange polynomials.

3.1.2.1 Two Dimensions Differentiation in the Standard Regions, Ωst

Implementation.
note: Numerical
differentiation in Ωst:
Quadrilateral and
triangular regions.

Quadrilateral Region

To differentiate an expansion within the standard quadrilateral region Q2 of the form:

uδ(ξ1, ξ2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(ξ1, ξ2),

we first represent the function in terms of Lagrange polynomials so

uδ(ξ1, ξ2) =
Q1−1∑

p=0

Q2−1∑

q=0

upq hp(ξ1)hq(ξ2),
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Figure 2: Diagramatic representation of each amalgamation scheme. Four quadrilateral elements with P1 =

P2 = 1 and Q1 = Q2 = 3 are considered for the backward transform operator.

can be used for the tetrahedron and prism, although it is typically less e�cient than the
hexahedron due to the inter-dependency of the p, q and r indices. With a little more work,
we can again use linear algebra packages by rewriting the summation as a series of matrix-
matrix operations, ⇣

(Û>
[P1]B

>
1 )

>
[Q2]B

>
2

⌘>

[Q3]
B

>
3 , (4)

where Û[P1]is :
,
:::
for

::::::::::
example,

::::::::
denotes

:
the reinterpretation of the vector û as a P1⇥P2P3 matrix

stored in column-major format. The parentheses also highlight where temporary storage is
required to store intermediate steps. Whilst intuition may point towards sum-factorisation
being the quickest way to evaluate these operators due to the reduction in operator count,
our previous work demonstrates that the fastest technique depends heavily on polynomial
order, element type and the

:::::
type

::
of

:
operator under consideration. This points towards there

being the need for a number of di↵erent amalgamation schemes in order to attain optimal
performance.

2.3. Amalgamation schemes

Our earlier studies applied the strategies of the previous section by iterating over each
element, evaluating the operator and measuring the total execution time for the entire mesh.
However, in the context of memory e�ciency and using the CPU cache e↵ectively, this
approach may not prove to be the most optimal if matrices are not stored contiguously in
memory. Additionally, since local matrices must be generated for each element, there is a
large cost incurred in moving them from main memory to the processor.

The purpose of this work is therefore to reformulate these strategies in the context of
multiple elements. We aim to remove local matrices wherever possible, thereby reducing
data movement and increasing data locality. We will leverage both the tensor-product de-
composition of the spectral/hp element method and the use of a standard region, on which
we can define an operator for many elements simultaneously. Then, through grouping local
elemental storage of the coe�cient and physical spaces, we aim to apply standard level-3
BLAS operations such as dgemm for matrix multiplication wherever possible. These routines,
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(a) contiguous layout (b) interleaved layout

Fig. 2. Contiguous vs. interleaved memory layout for a group of four elements, denoted by
di↵erent coloured blocks. Arrows denote the memory storage direction.

purpose of this utility is to examine the use of explicit single-instruction multiple-331

data (SIMD) instructions in order to achieve optimal performance for kernels which332

evaluate the Helmholtz operator. As the name implies, these instructions allow more333

than one data entry to be operated on (through e.g. multiplication or addition) dur-334

ing a single CPU cycle. On modern hardware, this typically takes the form of 4 or335

8 floating-point instructions (FLOPS) in a single cycle using either 256-bit or 512-336

bit advanced vector instructions (AVX), denoted as AVX2 and AVX512 respectively.337

Furthermore, the use of one or more fused-multiply add (FMA) units, which combine338

the multiplication and addition operation a · b + c into a single cycle, further enhance339

the potential FLOPS available. In order to attain the maximum peak performance of340

these architectures, codes must be written using these important instruction sets in341

mind.342

The precise way in which SIMD can be used in finite element formulations has343

been the consideration of various previous studies. Broadly, SIMD may be applied in344

three di↵erent ways:345

• Assuming the data regarding expansion coe�cients are stored in an element-346

by-element ordering, we may choose to iterate over either 4 or 8 degrees of347

freedom at a time and load them into a vector register. The main drawback348

for this method is that the number of degrees of freedom is rarely divisible349

by the vector width, and so padding must be used for each element. This350

approach can be seen in [3, 4].351

• We may alternatively choose to combine element data into groups correspond-352

ing to the vector width of the architecture, as is seen in e.g. [12, 11, 21, 20, 1]353

and visualised in Figure 2. For example, on an AVX2 machine with a 256-bit354

vector width corresponding to 4 double-precision floating point numbers, we355

may group 4 elements so that their data are interleaved in memory. In this356

case, no padding per-element is required; however if the number of elements357

is not divisible by the vector width then a small and indeed negligible degree358

of padding will be required to mask the missing elements.359

• Alternatively, if considering problems involving the function u and its three-360

dimensional gradient ru, as would appear in e.g. the discontinuous Galerkin361

method, the four components (u, @xu, @yu, @zu) can be loaded into a single362

This manuscript is for review purposes only.
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8 floating-point instructions (FLOPS) in a single cycle using either 256-bit or 512-336

bit advanced vector instructions (AVX), denoted as AVX2 and AVX512 respectively.337

Furthermore, the use of one or more fused-multiply add (FMA) units, which combine338

the multiplication and addition operation a · b + c into a single cycle, further enhance339

the potential FLOPS available. In order to attain the maximum peak performance of340

these architectures, codes must be written using these important instruction sets in341

mind.342

The precise way in which SIMD can be used in finite element formulations has343

been the consideration of various previous studies. Broadly, SIMD may be applied in344

three di↵erent ways:345

• Assuming the data regarding expansion coe�cients are stored in an element-346

by-element ordering, we may choose to iterate over either 4 or 8 degrees of347

freedom at a time and load them into a vector register. The main drawback348

for this method is that the number of degrees of freedom is rarely divisible349

by the vector width, and so padding must be used for each element. This350

approach can be seen in [3, 4].351

• We may alternatively choose to combine element data into groups correspond-352

ing to the vector width of the architecture, as is seen in e.g. [12, 11, 21, 20, 1]353

and visualised in Figure 2. For example, on an AVX2 machine with a 256-bit354

vector width corresponding to 4 double-precision floating point numbers, we355

may group 4 elements so that their data are interleaved in memory. In this356

case, no padding per-element is required; however if the number of elements357

is not divisible by the vector width then a small and indeed negligible degree358

of padding will be required to mask the missing elements.359

• Alternatively, if considering problems involving the function u and its three-360

dimensional gradient ru, as would appear in e.g. the discontinuous Galerkin361

method, the four components (u, @xu, @yu, @zu) can be loaded into a single362
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Fig. 5. Roofline analysis of the Helmholtz implementation for 2D (top) and 3D (bottom)
elements on the Broadwell E5-2697v4 processor, for both regular and deformed geometries.

is increased, so that marker points from left to right generally denote simulations at617

increasing polynomial order. From the figure, it is evident that in all cases there is a618

clear distinction here between the FLOPS-bound regular elements and the memory-619

bound deformed elements, which was highlighted in the previous section in terms of620

throughput trends.621

Furthermore, these roofline models allow us to firmly validate the e�ciency of622

the implementation. In the case of deformed elements, simulations are close to the623

memory-bandwidth imposed roofline, aside from at higher polynomial orders where624
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StdRegions

LocalRegions SpatialDomainsMultiRegions

Collections

Core Nektar++ libraries

SolverUtils

IncNavierStokes CompressibleFlow ADR Acoustics ...

FieldUtilsNekMeshUtils

Nektar++ Stack

Philosophy

3

CAD Flow solution

Single step process from CAD to flow solution 
As few user parameters as possible - automatic 

curvature refinement
Preserve CAD throughout

Linear mesh 
generation

High-order 
manipulation

Mesh 
optimisation 
+ correction

CFD / 
solvers



Post processing

•Data set movement becoming challenging 

•On site post-processing

•In-situ processing

•Similar to experimental campaigns where we need to decide on 
data capture 

•Likely to require interactive adjustment

•5GB data files per time snapshot. 

•Post processed on 24 core node

•Domain decomposition into 100 partitions

•In-house iso-contour extraction to process 

each partition in task based manner

•Batch processed snapshot through vis 

package to get jpg file and then 
constructed movie

•Clearly a number of sub-steps to decide 

on isocontour, view angle etc!



Post processing pipeline

Introduction: FieldConvert

I Post-processing in Nektar++ is done using FieldConvert, e.g.

FieldConvert in1.xml in2.fld -m vorticity out.vtu

I FieldConvert is organized in modules, which are classified as

Input, Process and Output

.xml

.fld

.pts
InputModule ProcessModule OutputModule

.vtu

.dat

.fld

.pts

I It is possible to use many input and process modules in a

single FieldConvert call

FilterFieldConvert

Examples:

<FILTER TYPE="FieldConvert">

<PARAM NAME="OutputFile">output.vtu </PARAM >

<PARAM NAME="OutputFrequency">100</PARAM >

<PARAM NAME="Modules"> vorticity C0Projection </PARAM >

</FILTER >

<FILTER TYPE="AverageFields">

<PARAM NAME="OutputFile">output.fld </PARAM >

<PARAM NAME="OutputFrequency">100</PARAM >

<PARAM NAME="Modules"> extract:bnd=0 </PARAM >

</FILTER >

FieldUtils

•Can use library to setup 
post-processing call from 
input file

•Have developed python 

interface to modules 



Development practices & Software Engineering 

Maintaining Code Stability

•Version-control (Git + Gitlab)

•Issue tracking (Gitlab)

•Tests & Continuous Integration (Gitlab CI)

•gitlab.nektar.info

•Active Development Team: Senior Developers



Summary/Comments

•Increasing mesh complexity (even for high order meshes) may 
well require in-situ mesh adaption and access to CAD/
Geometry 

•Already requires CAD preprocessing/De-featuring

•Also need appropriate format, i.e. hdf5


•In-situ analysis increasingly required

•Interactively steer analysis. 


•Software: Maintainability and evolution of code is possible 
since we have original development team. 

•What is process for legacy or community codes without 

development team? 



Discussion points

1.What do you see as the key challenges Exascale presents from an end-user 

point of view? 

2.Based on the presentaKons what aspects of pre- and post-processing  for 

Exascale compuKng have not been covered? Note that Geometry, CAD and 

AdapKvity are to be discussed in the next session.

3.What are the plans for essenKal legacy codes and how to engage with Exascale 

systems over the next decade? For example: establish new development groups, 

develop middleware for pre- and post-processing, move to other code-bases, hope 

for the best … 


