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Thanks to the ELEMENT workshop 

In mesh adaption and CAD for simulation give:  
 

vision for what meshing would ideally look  
like over the next decade? 

Grand challenge: wall resolved LES simulation of a full 
powered air-craft configuration in the full flight envelope  
(NASA CFD Vision 2030’14) 



Body-fitted & piece-wise polynomial curved tets

• e.g. buffeting: unsteady interaction of shock and turbulent BL 

• Previous issues, current LES & adaption results. A  vision of: 

• body-fitted adapted meshes from CAD models 

• piece-wise polynomial curved tetrahedra 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Current LES & meshing: curved and adapted

• Unstructured high-order methods & curved meshes: promising LES 
results for accurate prediction of unsteady transition to turbulence  
(Uranga, Persson & Peraire IJNMF’11) (NASA CFD Vision 2030’14) (HiOCFD AIAA’17) (Fernandez, Nguyen & 
Peraire JCP’17) (Mengaldo, Moxey, Turner, Moura, Jassim, Taylor, Peiro & Sherwin ’19’20) (Nguyen, Terrana & 
Peraire AIAA’20) 

• Unstructured methods & adapted straight-edged meshes: accurate 
quantities of interest for a fixed number of DOFs   
(Loseille & Alauzet JCP’10, SJNA’11, CAD’16) (Yano & Darmofal JCP’12) 

Adapted meshing from CAD need: automatically capture highly curved, 
stretched & localized unsteady flow & geometry features
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Laminar Transition Turbulent

Instantaneous Q-criterion isosurface colored by pressure in off-design condition  
(Fernandez, Nguyen, Roca & Peraire, AIAA’16)



Meshing vision: curved adaption to geometry & solution
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Straight-edged mesh with 
interpolative boundary

Straight-edged mesh
adapted to low-order solution

Curved mesh with
(Ressenlaer, MIT, UPC, 

Swansea U, Pointwise…) 
approximative boundary

(UC Louvain, INRIA, BSC, …)

Curved mesh
adapted to high-order solution

Current: automatic
straight-edged adaption 

Vision: automatic 
usnteady curved adaption

+ +

(INRIA, MIT, Boeing, 
NASA, Pointwise, …)

(Imperial College, UC Louvain, 
LLNL, UC Berkeley, INRIA, BSC, …)



• In. Geometry proxy, curved tet. mesh, and high-order sol. 

• Local curved re-meshing: enough point-wise quality while,  

• approximating geometry proxy 

•Out. Adapted boundary fitted curved mesh 

• Virtual geometry 

•Geometry queries 

• Proxy access, storage & representation 

•Mesh curving

Outline: curved adaption step & detailed visions
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Virtual geometry vision (1 / 2)
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•Virtual geometry: group entities according to simulation intent  
(Geode Lite, Pointwise) (Tierney, Sun, Robinson & Armstrong, CAD’17)  
 
 
 

•Current: uses a CAD B-rep. with gaps & normal discontinuities 

• Issue: fine meshes are meeting CAD tolerance and thus, they 
might violate simulation intent (steps & normal discontinuities) 

•CAD challenge: will use CAD B-rep. with tighter tolerances or,

High-Lift Jaxa Standard Model (using Pointwise)
CAD B-rep.: 409 surfaces Virtual geometry: 105 simulation surfaces



Virtual geometry (2 / 2)
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•Meshing vision: will use curved triangular meshes  
(Persson, Aftosmis & Haimes IMR’06) (Haimes, EGADS) (Loseille, feflo.a) (Jiménez et al. IMR’19) 

• preserving the simulation intent (simulation surfaces) and,  
 
 
 
 
 
 

• smoothly approximating a CAD B-rep. within model tolerance (green) 
Isophote stripes: leading edge of a quartic triangular mesh proxy (Jiménez, Gargallo & Roca IMR’19)

Vision: continuous normalsCurrent: discontinuous normals

Current mesh: CAD B-rep. 
interpolation & curvature viz.

Mesh vision: smooth B-rep. 
approximation & curvature viz.

Virtual geometry: 1 simulation curve 
as 2 CAD curves & curvature viz.



Geometry queries vision
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•Current state: forward (& inverse) evaluations of values, 1st, 
and 2nd derivatives.  
(Haimes, EGADS) (Pointwise, GEODE) (Open CASCADE) 

• Issue: methods to improve geometric accuracy of surface 
meshes are tending to need higher derivatives  
(Remacle, Lambrechts, Geuzaine & Toulorge IMR’14) (Ruiz, Sarrate & Roca IMR’15’16)  
(Feuillet, Loseille & Alauzet IMR’19) (Haimes, EGADS) 

•Vision: will use up to 3rd derivatives (or even more)

Interpolative quintic mesh 
& normal error amplified 2 103 times

Approximative quintic mesh 
& normal error amplified 2 107 times

(Ruiz, Sarrate & Roca)



Proxy access, storage & representation
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•Current state: sequential and non-distributed surface proxies 

• Issue: copies of full geo. proxy will miss-use scarce memory  
(Dongarrra et al., App. Math. Res. for Exascale, DOE’14) (Chaurasia, Roca, Persson & Peraire IMR’12) 
(Moxey, Green, Sherwin & Peiró CMAME’15) (Gargallo, Hozeaux & Roca, IMR’17) (Haimes, EGADS) 

•Vision: distributed curved meshes of surfaces or even, 
volumes (e.g. to enable parallel curved uniform refinements)  

(Gargallo-Peiró, Ruiz-Gironés, Houzeaux & Roca, ICOSAHOM’18)

Distributed geometry proxy 
Coarse curved mesh

Fine & distributed 
Curved mesh

Subdivide 
coarse curved mesh



Proxy acces, storage & dims.: distri. subdi. (x 4096)

!11

24 s, 768 cores (colored), 16 boxes, 208K (quadratic) to 860M (linear) elements, HDF5  
(Gargallo-Peiró, Ruiz-Gironés, Houzeaux, Roca, ICOSAHOM’18)



•Current state: non-distributed curving (almost morphing) 

• Issues: generate & distribute bottleneck. Only used to curve 
(Dongarrra et al., Applied Math. Research for Exascale DOE’14) (Gargallo-Peiró, Hozeaux & Roca 
IMR’17) (Gargallo-Peiró, Ruiz-Gironés, Houzeaux & Roca ICOSAHOM’18) 

•Vision: will be distributed & also used to r-adapt meshes 
between local curved re-meshing steps 
(Ruiz & Roca IMR’19) (Dobrev, Kolev & Rieben SJSC’12) (Marcon, Turner, Moxey, Sherwin & Peiró 
IMR’17) (Dobrev, Knupp, Kolev et al. SJSC’19) (Shi, Persson et al., AIAA’19) (Zhang, Johnen & 
Remacle IMR’18) (Aparicio, Gargallo & Roca IMR’18’19) (Feuillet, Loseille & Alauzet IMR’18, CAD’20)

Mesh curving vision
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Distributed curving: laminar BL (1:400), 4M quartic tet. (like 256M tet.), 2400 cores, 17 minutes 
(Ruiz-Gironés & Roca IMR’19)



•Sequential anisotropic curving: 

•Modified BLS & RTR: halve & double step, predictor, and memory   

• Newton-CG: normalized curvature check 

• diagonal-ICHOL: switch indicator 

• Forcing term estimation: linear or quadratic model 
 
 
 
 
 
 
 

• To meet point-wise stretching, alignment & sizing, non-constant 
resolution of curved elements is key (local re-meshing, too)  
(Aparicio, Gargallo & Roca IMR’18’19)

Curving vision: curved r-adaption, 1:100
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640 linear tris., iso-resolution, 353 nodes, 
visualization mesh, 5760 linear tris.  

40 curved quartic tris., iso-resolution, 353 nodes, 
visualization mesh, 5760 linear tris. 



Summary: curved adaption to geometry & solution

• Virtual geometry: will use curved surface meshes preserving simulation 
intent and, smoothly approximating CAD B-rep. within model tolerance 

• Geometry queries: will use up to 3rd derivatives (or even more) pushed 
by methods to improve geometric accuracy 

• Proxy access, storage & dims.: will use distributed curved meshes of 
surfaces or even, volumes 

• Curved morphing: will be distributed and, also used to r-adapt the mesh 
between local curved re-meshing steps 

Curved adapted meshing from CAD: will automatically capture highly 
curved, stretched & localized unsteady flow & geometry features
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