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High-order finite elements are a good foundation for
next-generation scalable multi-physics simulations

Inertial Confinement Fusion

§ Large-scale parallel multi-physics simulations
• radiation diffusion
• electromagnetic diffusion
• compressible hydrodynamics

§ Finite elements naturally connect different physics

§ High-order finite elements on high-order meshes
• increased accuracy for smooth problems
• sub-element modeling for problems with shocks
• HPC utilization, FLOPs/bytes increase with the order

§ Need new (interesting!) R&D for full benefits
• meshing, discretizations, solvers, AMR, UQ, visualization, …
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Advection phase (~c = �~vm)
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We model shock hydrodynamics with high-order
FEM in both Lagrange and Remap ALE phases

* “High-order multi-material ALE hydrodynamics”, SISC 2018

Lagrange phase
Physical time evolution
Based on physical motion

Remap phase
Pseudo-time evolution
Based on mesh motion
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High-order Low-order SGH

Robustness

Symmetry 
preservation

High-order finite elements on high-order meshes
lead to more robust and reliable Lagrangian simulations

* BLAST project, www.llnl.gov/casc/blast



Advection-based interpolation (DG pseudo-
time remap in BLAST)

High-order mesh relaxation in MFEM (neo-
Hookean evolution)

We target high-order curved elements + unstructured meshes +  moving meshes 

Moving meshes: high-order mesh optimization and 
interpolation between meshes

* “Monotonicity in high-order curvilinear finite element arbitrary Lagrangian–Eulerian remap”, IJNMF 2015



* Many papers by: Shephard, Shontz, Roca, Geuzaine, Johnen, Persson, Panozzo

Algorithms for high-order mesh optimization
§ High-order mesh positions are discretized via position vector and a FE basis: 

x = (x1 . . .xN )T , xq(x̄q) =
NX

i=1

xiw̄i(x̄q)

§ !𝑤! "
#! spans 𝑄$ for quadrilateral / hexahedral elements.

x = (x1 . . .xN )T , xq(x̄q) =
NX

i=1

xiw̄i(x̄q)

§ Reference -> physical Jacobian is given by
the basis functions’ gradients:

Aq(x) =
@xq

@x̄q
=

NX

i=1

xi[rw̄i(x̄q)]
T Example of a single 𝑄! element

§ To optimize the curved mesh, we move its
nodes by changing 𝒙. 

§ Topology is preserved.

§ !𝑤! "
#! spans 𝑄$ for quadrilateral / hexahedral elements.

§ !𝑤! "
#! spans 𝑃$ for triangular / tetrahedral elements.

3rd order transformation

A 𝒙"𝒙



§ Target-Matrix Optimization Paradigm (TMOP)
— Extended P. Knupp’s theory to high-order meshes.

§ Application-specific target elements, 𝑊
— Allow tailoring to different apps. Examples: ideal, 

ideal + specified size.

§ Point-based mesh quality metric 𝜇 𝑇
— Can measure shape, size and alignment independently. 

computed on quadrature point level. Examples:

§ Global quality functional and minimization
— Hessian-based methods need 𝜕!µ/𝜕T!.
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* “The target-matrix optimization paradigm for high-order meshes”, SISC 2019

Target-Matrix Optimization Paradigm (TMOP)



* “Simulation-Driven Optimization of High-Order Meshes in ALE Hydrodynamics”, 2020

§ Jacobian decomposition: 𝑊 = [volume] [skew] [orientation] [aspect ratio].

§ Size/volume and aspect-ratio adaptivity to improve mesh quality around 
high-gradient regions of the solution (η)

Material indicator on the original mesh Mesh optimized for shape + size

µ7(T ) = |T � T�t|2

Target construction for solution-based adaptivity



High-velocity gas impact. Mesh adapted  to (high-
order)  material indicators.

TMOP extends to higher space 
dimensions, different element types

Application to solution adaptation in multi-material ALE



Adaptive mesh refinement on library level
– Conforming local refinement on simplex meshes

– Non-conforming refinement for quad/hex meshes 

– h-refinement with fixed p (p-refinement in a branch)

General approach
– any high-order finite element space, H1, H(curl), 

H(div), … on any high-order curved mesh

– 2D and 3D

– arbitrary order hanging nodes

– anisotropic refinement

– derifenement

– serial and parallel, including parallel load balancing

– independent of the physics (easy to incorporate in 
applications)

Example 15

Algorithms for unstructured non-conforming AMR

Shaper miniapp



Nonconforming variational restriction
Constructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

High-order elements

Global  interpolation

Nonconforming Meshes

Finite element space cut along coarse-fine interfaces
(tangential component discontinuous)
Define constrained FE space with some degrees of
freedom (DOFs) eliminated

Simple example: first order H(curl) (edge elements)

Constraint: e = f = d/2

constraint:  e = f = d/2

H(curl) elements

Constructing the P matrix

Indirect constraints: slave DOFs may depend on other
slaves

More complex situations in 3D.
Some methods enforce 2:1 ratio between
edges/faces, we do not.

Indirect constraints

more complicated in 3D…

Variational restriction

x – conforming dofs
y – nonconforming dofs

(unconstrained + constrained)
W – constrained dofs interpolation 

* “Non-Conforming Mesh Refinement for High-Order Finite Elements”, SISC 2019



Lagrangian dynamic AMR on Sedov blast

Adaptive, viscosity-based refinement and 
derefinement, 2nd order Lagrangian Sedov

Parallel load balancing based on space-filling 
(Hilbert) curve partitioning, 16 cores



hr-adaptivity requires many fewer degrees than r- or h-
adaptivity for the same error

solution h-adaptivity

r-adaptivity hr-adaptivity

* “hr-adaptivity for nonconforming high-order meshes with the target matrix optimization paradigm”, 2020

hr-adaptivity leads to 20x reduction in error relative to a Cartesian mesh and 8x relative to r-adaptivity mesh

hr-adaptivity for nonconforming high-order meshes



Robust + efficient algorithms for high-order applications

ETHOS: High-order mesh 
optimization

MFEM: Finite element 
methods research + software

BLAST: High-order ALE shock 
multi-physics code

www.llnl.gov/casc/blastmfem.org

ceed.exascaleproject.org

CEED: High-performance algorithms 
on advanced architectures

www.llnl.gov/casc/ethos



§ The variational formulation allows to
use partial assembly extensively. 

F (x) :=
X

E2M

Z

Et

µ(T (xt))dxt =
X

E2M

X

xq2Et

wq det(W (x̄q))µ(T (xq))
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A =
@2F

@x2

§ Naturally separates FE-based (P, G, B) and TMOP-based operations (𝐷).

§ TMOP-based (𝐷) PA / GPU kernels:  
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T (x), µ(T ),
@µ(T )

@T
,
@2µ(T )

@T 2

§ FE-based (𝑃, 𝐺, 𝐵) PA / GPU kernels:
- Integral of 𝐹, and the nonlinear form 𝜕𝐹/𝜕𝑥.
- Local action of the Hessian 𝜕!𝐹/𝜕𝑥!, and its diagonal.

§ Initial speedups relative to full assembly:
- 3D, 4th order mesh, 448 elements: 6.5x (1 CPU PA), 102x (1 GPU PA)
- full-scale runs on Sierra (16K V100 GPUs)



Parallel AMR scaling to ~400K MPI tasks

 1

 10

 100

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 384K    

Ti
m

e 
of

 A
M

R
 it

er
at

io
n 

[s
ec

on
ds

]

CPU cores

ideal strong scaling
weak scaling

size 0.5M
size 1M
size 2M
size 4M
size 8M

size 16M
size 32M
size 64M

Parallel decomposition 
(2048 domains shown)

Parallel partitioning via 
Hilbert curve

• weak+strong scaling up to ~400K MPI tasks on BG/Q
• measure AMR only components: interpolation matrix, assembly, marking, 

refinement & rebalancing (no linear solves, no “physics”)



Cool image here

ceed.exascaleproject.org/fms

• FMS is a new lightweight API/specification describing:

1. mesh topology
2. finite element fields defined on the mesh

• Both mesh and fields can be general, high-order. 
• Mesh nodes are just one of the fields.

• All mesh entities of all dimensions are represented: 
vertices, edges, faces, elements:
• mesh entities described by downward adjacencies.
• fields described by dofs associated with interior of entities

• Visualization: next version of VisIt will support FMS!
• Native support in MFEM, CEED partners
• Binary and ASCII I/O formats via Conduit

FMS version 0.2 to be released soon – let us know what you think!



§ High-order finite elements on high-order meshes 
show promise for HPC multi-physics simulations

§ Some ongoing research:
• GPU-oriented algorithms and performance 

optimization on modern architectures
• Matrix-free scalable preconditioners

• Combination of TMOP and AMR (hr-adaptivity)

• Approximate preservation of discrete surfaces
• Improved nonlinear solvers

§ Papers and additional details: 

§ Open-source finite element software:

mfem.org 

people.llnl.gov/kolev1

Current and future work

Q4 Rayleigh-Taylor single-material 
ALE on 256 processors  
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