
Towards (very) large scale finite element mesh
generation with Gmsh

Christophe Geuzaine

Université de Liège

ELEMENT workshop, October 20, 2020

1

Some background

• I am a professor at the University of Liège in Belgium, where I lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

• Our research interests include modeling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering and
science

• Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

• We write quite a lot of codes, some released as open source software:
http://gmsh.info, http://getdp.info, http://onelab.info

2

http://gmsh.info
http://getdp.info
http://onelab.info

What is Gmsh?

• Gmsh (http://gmsh.info) is an open source 3D finite element mesh
generator with a built-in CAD engine and post-processor

• Includes a graphical user interface (GUI) and can drive any simulation code
through ONELAB

• Today, Gmsh represents about 500k lines of C++ code
• still same 2 core developers (Jean-Francois Remacle from UCLouvain and

myself); about 100 with ≥ 1 commit
• about 1,000 people on mailing lists
• about 10,000 downloads per month (70% Windows)
• about 500 citations per year – the main Gmsh paper is cited about 4,500

times
• Gmsh has probably become one of the most popular (open source) finite

element mesh generators?

3

http://gmsh.info

∼ 20 years of Gmsh development in 1 minute
A warm thank you to all the contributors!

http://gmsh.info/doc/gource_faster.mp4
http://gmsh.info/CREDITS.txt

A little bit of history

• Gmsh was started in 1996, as a side project
• 1998: First public release
• 2003: Open Sourced under GNU GPL
• 2006: OpenCASCADE integration (Gmsh 2)
• 2009: Gmsh paper and switch to CMake
• 2012: First curved meshing and quad meshing developments
• 2013: Homology and ONELAB solver interface
• 2015: Multi-threaded 1D and 2D meshing (coarse-grained)
• 2017: Boolean operations and switch to Git (Gmsh 3)
• 2018: C++, C, Python and Julia API (Gmsh 4)
• 2019: Multi-threaded 3D meshing (fine-grained), robust STL remeshing

5

Basic concepts

• Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing

• Gmsh can be used at 3 levels
• Through the GUI
• Through the dedicated .geo language
• Through the C++, C, Python and Julia API

• Main characteristics
• All algorithms are written in terms of abstract model entities, using a

Boundary REPresentation (BREP) approach
• Gmsh never translates from one CAD format to another; it directly accesses

each CAD kernel API (OpenCASCADE, Built-in, ...)

6

Basic concepts
The goal is to deal with very different underlying data representations in a

transparent manner

7

Recent developments

• Application Programming Interface (API)
• Multi-threaded meshing
• Robust STL remeshing based on parametrizations

8

Application Programming Interface

Gmsh 4 introduces a new stable Application Programming Interface (API) for
C++, C, Python and Julia, with the following design goals:

• Allow to do everything that can be done in .geo files
• ... and then much more!

• Be robust, in particular to wrong input data (i.e. “never crash”)
• Be efficient; but still allow to do simple things, simply
• Be maintainable over the long run

9

Application Programming Interface

To achieve these goals the Gmsh API
• is purely functional
• only uses basic types from the target language (C++, C, Python or Julia)
• is automatically generated from a master API description file
• is fully documented

10

Application Programming Interface
A simple example written using the Python API:

import gmsh

gmsh. initialize ()
gmsh.model.add(" boolean ")

R = 1.4; Rs = R*.7; Rt = R*1.25

gmsh.model.occ. addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1)
gmsh.model.occ. addSphere (0,0,0,Rt , 2)
gmsh.model.occ. intersect ([(3 , 1)] , [(3, 2)] , 3)
gmsh.model.occ. addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4)
gmsh.model.occ. addCylinder (0,-2*R,0, 0,4*R,0, Rs , 5)
gmsh.model.occ. addCylinder (0,0, -2*R, 0,0,4*R, Rs , 6)
gmsh.model.occ.fuse ([(3 , 4), (3, 5)], [(3 , 6)] , 7)
gmsh.model.occ.cut ([(3 , 3)], [(3 , 7)], 8)

gmsh.model.occ. synchronize ()
gsmh.model.mesh. generate (3)
gmsh.fltk.run ()
gmsh. finalize ()

gmsh/demos/api/boolean.py

11

https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/boolean.py

Application Programming Interface
... or using the C++ API:

include <gmsh.h>

int main(int argc , char ** argv)
{

gmsh :: initialize (argc , argv);
gmsh :: model :: add(" boolean ");

double R = 1.4, Rs = R*.7, Rt = R *1.25;

std :: vector <std ::pair <int , int > > ov;
std :: vector <std :: vector <std ::pair <int , int > > > ovv;
gmsh :: model :: occ :: addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1);
gmsh :: model :: occ :: addSphere (0,0,0,Rt , 2);
gmsh :: model :: occ :: intersect ({{3 , 1}} , {{3 , 2}}, ov , ovv , 3);
gmsh :: model :: occ :: addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4);
gmsh :: model :: occ :: addCylinder (0 , -2*R,0, 0 ,4*R,0, Rs , 5);
gmsh :: model :: occ :: addCylinder (0 ,0,-2*R, 0 ,0,4*R, Rs , 6);
gmsh :: model :: occ :: fuse ({{3 , 4}, {3, 5}}, {{3 , 6}} , ov , ovv , 7);
gmsh :: model :: occ :: cut ({{3 , 3}}, {{3 , 7}}, ov , ovv , 8);

gmsh :: model :: occ :: synchronize ();

gmsh :: model :: mesh :: generate (3);
gmsh :: fltk :: run ();
gmsh :: finalize ();
return 0;

}

gmsh/demos/api/boolean.cpp

12

https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/boolean.cpp

Application Programming Interface
In addition to CAD creation and meshing, the API can be used to

• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/demos/api/poisson.py)

• Create post-processing views
• Run the GUI, or build custom GUIs, e.g. for domain-specific codes (see

gmsh/demos/api/custom gui.py) or co-post-processing via ONELAB

We publish a binary Software Development Toolkit (SDK):
• Continuously delivered (for each commit in master), like the Gmsh app
• Contains the dynamic Gmsh library together with the corresponding C++/C

header files, and Python and Julia modules

13

https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/custom_gui.py

Multi-threaded meshing

Meshing is multi-threaded using OpenMP:
• 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.

several curves/surfaces are meshed concurrently
• The new 3D Delaunay-based algorithm is multi-threaded using a fine-grained

approach.

You need to recompile Gmsh with -DENABLE OPENMP=1 to enable this; then e.g.
gmsh file.geo -3 -nt 8 -algo hxt

14

Multi-threaded meshing

[C. Marot et al., IJNME, 2019]

15

Multi-threaded meshing

AMD EPYC 2x 64-core
16

Multi-threaded meshing

AMD EPYC 2x 64-core

17

Robust STL remeshing

New pipeline to remesh discrete surfaces (represented by triangulations):
• Automatic construction of a set of parametrizations that form an atlas of

the model
• Each parametrization is guaranteed to be one-to-one, amenable to meshing

using existing algorithms
• New nodes are guaranteed to be on the input triangulation (“no modelling”)
• Optional pre-processing (i.e. edge detection) to color sub-patches if sharp

features need to be preserved

18

Robust STL remeshing

CT scan of an artery: automatic atlas creation – each patch is provably
parametrizable by solving a linear PDE, using mean value coordinates

19

Robust STL remeshing

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches

created for reparametrization

20

Towards (very) large scale mesh generation

PARSEC (PRACE 6iP 2020-2022):
Parallel Adaptive Refinement for Simulations on Exascale Computers

Partners:
• Barcelona Supercomputing Center
• KTH Royal Institute of Technology
• Université of Liège
• Cenaero

Aim: Sharing best practices and collaboratively modernize the AMR
implementation of three leading edge community codes (Alya, Nek5000, Argo),
for the exploitation of future (pre-)Exacale machines

21

Towards (very) large scale mesh generation

Meshing, refinement, coarsening (including for high-order meshes)

Tools: Alya SFC partitioner, ParMETIS, MAdLib, Gmsh

Strategies:
• Classical “freeze and move interfaces” strategy (Gmsh kernel in Alya and

MAdLib; Gmsh parallel partition topology as BRep)
• Proof-of-concept “single step” using coarse partition and remeshing of

discrete interfaces
• Particular focus on high-order meshes in Gmsh-MAdLib coupling

Looking forward to sharing results/code with ExCALIBUR!

22

Thank you

cgeuzaine@uliege.be

23

cgeuzaine@uliege.be

	Some background
	What is Gmsh?
	Recent developments
	PARSEC

