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Introduction
Credits
Exercise content created by EPCC, The University of Edinburgh. Documentation
and source code copyright The University of Edinburgh 2019. Lab style and
template created by NVIDIA, see https://nvidia.qwiklab.com/.

Purpose
In this self-paced, hands-on lab, we will take an existing CUDA application and
go through several optimization steps, measuring the performance benefits of
each. We will see the importance of minimizing data transfer, enabling coalesced
memory access, and tuning the parallel decomposition.

Getting the source
As before the code can be cloned from GitHub:

git clone https://github.com/EPCCed/APT-CUDA.git
cd APT-CUDA/exercises/cuda-reconstruct

Or you can use your existing repo (update with git pull)

Application
Introduction
This exercise involves performing a series of optimizations to an existing CUDA
application.

You start with an image that looks like this:
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Which has been generated from the original:

First is an image of Edinburgh Castle, processed such that the edges between
light and dark areas replace the original picture.

Your job: reconstruct the initial image
This is an artificial thing to do, but it mimics many scientific applications
(e.g. that solve systems of PDEs) since the algorithm is iterative, requiring many
successive stencil operations.
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Each pixel of the new image M is generated based on its neighboring pixel values
and the original edge data E by repeatedly performing the following update:

Mi,j = Mi−1,j + Mi+1,j + Mi,j−1 + Mi,j+1 − Ei,j
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The more iterations, the better the reconstruction (although for simplicity we
work in greyscale rather than colour).

Getting started
Run the original
You are provided with a working but slow CUDA implementation of the recon-
struction algorithm.

First of all, let’s compile and run the code. The code is set up to run the
algorithm on both the GPU and the CPU. It compares the outputs from the
two runs to verify correctness, and then displays timings for each run.

Build with make
Choose to work with either C or Fortran

C:

cd src_c
module load nvidia/nvhpc/22.11
make

Fortran:

cd src_fortran
module load nvidia/nvhpc/22.11
make

Run on the batch system
To run, you need to know your budget code. To do this, you need to know your
budget code - you can check by logging into SAFEm navigating to the relevant
Cirrus login account and checking which budgets it can access.

Submit the job with:

sbatch --account <YOUR BUDGET CODE> submit.sh

Query SLURM for your jobs:

squeue -u $USER
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During on campus tutorials we have reserved one node (4 GPUs) for the use
of the class. You can access this by editing the SLURM script or adding extra
options to the sbatch command:

sbatch --account d171 --qos=reservation
--reservation=<reservation ID>

View the resulting image
On Cirrus you can either:

1. View directly with display if you have set up X11 forwarding when you
connected

module load ImageMagick
display output.pgm

2. Use convert to turn the output file into e.g. a jpg or png file and then
copy it to your client

module load ImageMagick
convert output.pgm output.jpg

Hopefully you can see that the picture is starting to become clearer. As the
algorithm is iterative, there is a loop in the main routine that invokes the kernel
N = 100 times.

Increasing N will increase the quality of the reconstruction, but please don’t do
this during the lab!

If you were to run for 10 million iterations, the resulting image would look like
this:
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Optimising
Important note!
Keep a note of the run times of your jobs and what you have changed each time!

Now it’s time to optimise the code and improve on the GPU timing printed
when you ran the code, by editing the source code.

Note that a one pixel wide halo region of zeroes is added to each edge of the
various image-data arrays; this simplifies the computation as it allows the edge
pixels to be treated in the same manner as other pixels.

Note: The edge array, which holds the original edge data, does not have require
a halo.

Profiling
You can (should?) profile your code as you optimise it. There are basic
submission scripts for both Nsight Systems (profile-nsys.sh) and Compute
(profile-ncomp.sh) included. Once you have run these, you can transfer the
files to your workstation and analyse them with the GUIs (available from NVIDIA
https://developer.nvidia.com/tools-overview).

Minimizing Data Transfer
A challenge with GPUs and other accelerators is that transferring data between
host memory and device memory is often relatively slow. An important opti-
mization technique involves minimise the amount of data that is transferred
between host and device.

Notice that in the main loop in reconstruct.cu (C) or reconstruct.cuf
(Fortran), the data is copied from GPU memory to host memory and then
back to GPU memory at each iteration. This is not in fact necessary; with the
exception of the final iteration when the data must be copied back to the host,
it is going to be processed on the GPU again in the next iteration. Therefore,
we can optimise manipulating the GPU memory directly without expensive
transfers.

We can simply copy the output array directly to the input array after each
iteration.

In order to do this you will need to:
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C
• Remove the cudaMemcpy calls from inside the main loop

• Replace them with a cudaMemcpy call to copy, directly on the device, from
d_output to d_input

• Add a new cudaMemcpy call after the end of the loop (in between the two
calls to get_current_time()) to copy the final result back from the GPU
to the output buffer in host memory.

Fortran
• Remove the assignments to output (from d_output) and to d_input (from

output), inside the main loop

• Replace them with an assignment directly from d_output to d_input

• Add a new assignment after the end of the loop (in between the two calls
to cpu_time()) to copy the final result back from the GPU to the output
buffer in host memory

Once you have made these changes, compile and run the code again as above
and take note of the time taken by the GPU version.

How does it compare to the previous timing?

Enabling Coalesced Memory Accesses
Reminder
The GPU performs best when consecutive CUDA threads access consecutive
memory locations, allowing memory coalescing.

C
For the kernel in reconstruct_kernels.cu, it can be seen that consecutive
threads correspond to consecutive rows of the image, but consecutive memory
locations instead correspond to consecutive columns. The threads are not reading
from consecutive locations.

Fortran
For the kernel in reconstruct_kernels.cuf, it can be seen that consecutive
threads correspond to consecutive columns of the image, but consecutive memory
locations instead correspond to consecutive rows. The threads are not reading
from consecutive locations.
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What to do
• Update the kernel such that the role of the image row and column is

reversed, in relation to how pixels are assigned to CUDA threads.

• Since the image is perfectly square, you will not need to change the way
the kernel is launched.

• How does the performance compare to the previous version?

Improving Occupancy
You should hopefully have seen a noticeable improvement in performance as
a result of the changes you made to reduce data transfers between the host
and the device and to enable coalescing. However, the current solution is still
sub-optimal as it will not create sufficient threads to utilise all the SMs on the
GPU - it has low occupancy.

GPU codes typically run best when there are many threads running in parallel,
each doing a small part of the work. We can achieve this with our image
processing code by using a thread for each pixel of the image, rather than
for each row or column as before. CUDA supports 1-, 2- or 3-dimensional
decompositions. A 2D decomposition maps most naturally onto the pixels of an
image.

• Update your both your kernel, and the code responsible for specifying the
decomposition such that that a 2D decomposition is over both rows and
columns.

• The original code uses 256 threads per block in a 1D CUDA decomposition.
Replace this with 16 threads in each of the X and Y directions of the 2D
CUDA decomposition, to give a total of 256 threads per block. Ensure
that the number of blocks is specified appropriately in each direction.

• Ensure that you retain memory coalescing!

Measure performance and compare to the previous versions.

Investigating Grid and Block Sizes

Once you have the 2D kernel working correctly, you can try altering certain
parameters and see what effect this has on its performance. In particular, you
can investigate the effects of different grid and block sizes.
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How does changing the grid and block sizes affect the total runtime?
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