Your first CUDA program

Rupert Nash, Kevin Stratford, Alan Gray

Introduction

Credits

Exercise created by EPCC, The University of Edinburgh. Documentation and
source code copyright The University of Edinburgh 2016. Lab style and template
created by NVIDIA, see https://nvidia.qwiklab.com/.

Purpose
In this lab, you will learn how to adapt a simple code such that it uses the GPU.

It has the purpose of negating an array of integers. We introduce the important
concepts of device-memory management and kernel invocation. The final version
should copy an array of integers from the host to device, multiply each element
by -1 on the device, and then copy the array back to the host.

Choose the C or Fortran version.

Source code
You can get this from GitHub:

git clone https://github.com/EPCCed/APT-CUDA.git
cd APT-CUDA/exercises/cuda-intro/

Recall that on Cirrus, you need to use the /work filesystem for files that need to
be accessed from compute node, such as executables and data files. Therefore I
suggest you clone this to your directory under /work.

Note

The template source file is clearly marked with the sections to be edited, e.g.

/* Part 1A: allocate device memory */


https://nvidia.qwiklab.com/

Where necessary, you should refer to the CUDA C Programming Guide and
Reference Manual documents available from http://developer.nvidia.com/nvidia-
gpu-computing-documentation.

Part 1
Copying Between Host and Device
C

Start from the intro.cu template.

1A

Allocate memory for the array on the device: use the existing pointer d_a and
the variable sz (which has already been assigned the size of the array in bytes).

1B

Copy the array h_a on the host to d_a on the device.

1C
Copy d_a on the device back to h_out on the host.

1D

Free d_a.

Fortran

Start from the intro.cuf template.

1A

Allocate memory for the array on the device: use the existing pointer d_a and
ARRAY_SIZE (which has already been assigned the size of the array in elements)

1B

Copy the array h_a on the host to d_a on the device, using an appropriate
assignment operation.


http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation

1C

Copy d_a on the device back to h_out on the host, using another assignment
operation.

1D

Deallocate d_a.

Compilation

Load modules
First, we need to load a number of modules to allow compilation.

module load gcc nvidia/nvhpc/22.11

Use make

Compile the code using make. Note that the compute capability of the CUDA
device is specified with the —arch flag for C and with -March= for Fortran.

Running

On Cirrus

You can only run on the backend nodes, so must submit the job to the batch
system. To do this, you need to know your budget code - you can check by
logging into SAFE, navigating to the relevant Cirrus login account and checking
which budgets it can access.

Submit the job with
sbatch --account <YOUR BUDGET CODE> submit.sh

During on campus tutorials we have reserved one node (4 GPUs) for the use
of the class. You can access this by editing the SLURM script or adding extra
options to the sbatch command:

sbatch --account d171 --qos=reservation
--reservation=<reservation ID>

(The reservation ID will be given on the day)

The output (the contents of the h_out array) or any error messages will be
printed. So far the code simply copies from h_a on the host to d_a on the device,



then copies d_a back to h_out, so the output should be the initial content of
h_a - the numbers 0 to 255.

Part 2

Launching Kernels

Now we will actually run a kernel on the GPU device.

C

2A

Configure and launch the kernel using a 1D grid and a single thread block
(NUM_BLOCKS and THREADS_PER_BLOCK are already defined for this case).

2B

Implement the actual kernel function to negate an array element as follows:

int idx = threadldx.x;
d_alidx] = -1 * d_a[idx];

Compile and run the code as before. This time the output should contain the
result of negating each element of the input array. Because the array is initialised
to the numbers 0 to 255, you should see the numbers 0 down to -255 printed.

This kernel works, but since it only uses one thread block, it will only be utilising
one of the multiple SMs available on the GPU. Multiple thread blocks are needed
to fully utilize the available resources.

2C

Implement the kernel again, this time allowing multiple thread blocks. It will be
very similar to the previous kernel implementation except that the array index
will be computed differently:

int idx = threadIdx.x + (blockIdx.x * blockDim.x);

Remember to also change the kernel invocation to invoke negate_multiblock
this time. With this version you can change NUM_BLOCKS and THREADS_PER_BLOCK
to have different values - so long as they still multiply to give the array size.



Fortran

2A

Configure and launch the kernel using a 1D grid and a single thread block
(NUM_BLOCKS and THREADS_PER_BLOCK are already defined for this case).

2B

Implement the actual kernel function to negate an array element as follows:

integer :: idx
idx = threadidxix
aa(idx) = -1*aa(idx)

Compile and run the code as before. This time the output should contain the
result of negating each element of the input array. Because the array is initialised
to the numbers 0 to 255, you should see the numbers 0 down to -255 printed.

This kernel works, but since it only uses one thread block, it will only be utilising
one of the multiple SMs available on the GPU. Multiple thread blocks are needed
to fully utilize the available resources.

2C

Implement the kernel again, this time allowing multiple thread blocks. It will be
very similar to the previous kernel implementation except that the array index
will be computed differently:

idx = threadidx’x + ((blockidx%x-1) * blockdim’x)

Remember to also change the kernel invocation to invoke g negate_ multiblock
this time. With this version you can change NUM_BLOCKS and THREADS_PER_BLOCK
to have different values - so long as they still multiply to give the array size.

Part 3

Handling any size of array

Currently we are insisting that the array size be an exact multiple of the block
size. In general we should handle any size that will fit in GPU memory.

Let the total number of elements be N and the block size be B.

Recall that in integer division we discard the fractional part so we can write:



N=k«xB+r

i.e. N can divided into k (an integer) number of blocks, plus a remainder, r. If r
is zero, then we need k blocks, or else we need k + 1.

This can be expressed in a simple formula:

N -1
Blocks = —— +1
nBlocks B +

Convince yourself this is correct.

3A

Update the kernel launch code to compute the number of blocks using this
formula.

What will happen in the last block with the current kernel?

3B

Implement a condition in the kernel to protect against any problem which may
arise.

Try changing ARRAY_SIZE to a non-multiple of 256 (e.g. 500).



	Introduction
	Credits
	Purpose
	Source code
	Note

	Part 1
	Copying Between Host and Device

	C
	1A
	1B
	1C
	1D

	Fortran
	1A
	1B
	1C
	1D

	Compilation
	Load modules
	Use make

	Running
	On Cirrus

	Part 2
	Launching Kernels

	C
	2A
	2B
	2C

	Fortran
	2A
	2B
	2C

	Part 3
	Handling any size of array
	3A
	3B


