Why do we use HPC?

Last updated on 2025-10-07 | Edit this page

Estimated time: 20 minutes

Overview

Questions

  • What is the difference between a laptop, a server and a remote HPC system?
  • Why would I be interested in High Performance Computing (HPC)?
  • Have I already been relying on servers without realizing it?

Objectives

  • Recognize examples of remote servers and large-scale computing in everyday life.
  • Identify how an HPC system could benefit you.

HPC research examples


Frequently, research problems that use computing can outgrow the capabilities of the desktop or laptop computer where they started:

  • A statistics student wants to cross-validate a model. This involves running the model 1000 times — but each run takes an hour. Running the model on a laptop will take over a month! In this research problem, final results are calculated after all 1000 models have run, but typically only one model is run at a time (in serial) on the laptop. Since each of the 1000 runs is independent of all others, and given enough computers, it’s theoretically possible to run them all at once (in parallel).
  • A genomics researcher has been using small datasets of sequence data, but soon will be receiving a new type of sequencing data that is 10 times as large. It’s already challenging to open the datasets on a computer — analyzing these larger datasets will probably crash it. In this research problem, the calculations required might be impossible to parallelize, but a computer with more memory would be required to analyze the much larger future data set.
  • An engineer is using a fluid dynamics package that has an option to run in parallel. So far, this option was not utilized on a desktop. In going from 2D to 3D simulations, the simulation time has more than tripled. It might be useful to take advantage of that option or feature. In this research problem, the calculations in each region of the simulation are largely independent of calculations in other regions of the simulation. It’s possible to run each region’s calculations simultaneously (in parallel), communicate selected results to adjacent regions as needed, and repeat the calculations to converge on a final set of results. In moving from a 2D to a 3D model, both the amount of data and the amount of calculations increases greatly, and it’s theoretically possible to distribute the calculations across multiple computers communicating over a shared network.

In all these cases, access to more (and larger) computers is needed. Those larger computers should be usable by many people and problems at the same time, therefore solving many researchers’ problems in parallel.

Discussion

Over to you!

Talk to your neighbour, office mate or rubber duck about your research.

  • How does computing help you do your research?
  • How could more computing help you do more or better research?

A Standard Laptop for Standard Tasks


Today, many people use coding and data analysis in their jobs, typically working with standard laptops.

A standard laptop
A standard laptop

Let’s dissect what resources programs running on a laptop require:

  • The keyboard and/or touchpad is used to tell the computer what to do (Input)
  • The internal computing resources Central Processing Unit and Memory perform calculation
  • The display depicts progress and results (Output)

Schematically, this can be reduced to the following:

Schematic of how a computer works
Schematic of how a computer works

When Tasks Take Too Long


When the task to solve becomes heavy on computations, the operations are typically out-sourced from the local laptop or desktop to elsewhere.

For example, the task to find the directions for your next vacation. The capabilities of your laptop are typically not enough to calculate that route spontaneously: finding the shortest path through a network runs on the order of (v log v) time, where v (vertices) represents the number of intersections in your map. Instead of doing this yourself, you use a website, which in turn runs on a server, that is almost definitely not in the same room as you are.

A rack half full with servers
A rack half full with servers

Note here, that a server is mostly a noisy computer mounted into a rack cabinet which in turn resides in a data center. The internet made it possible that these data centers do not require to be nearby your laptop.

What people call the cloud is mostly a web-service where you can rent such servers by requesting remote resources that satisfy your requirements and paying for the time. This is often handled through an online, browser-based interface listing the various machines available and their capacities in terms of processing power, memory, and storage.

The server itself has no direct display or input methods attached to it. But most importantly, it has much more storage, memory and compute capacity than your laptop will ever have.

In any case, you need a local device (laptop, workstation, mobile phone or tablet) to interact with this remote machine, which people typically call ‘a server’.

When One Server Is Not Enough


If the computational task or analysis to complete is daunting for a single server, larger agglomerations of servers are used. These go by the name of “clusters” or “supercomputers”.

A rack full with servers
A rack full with servers

The methodology of providing the input data, configuring the program options, and retrieving the results is quite different to using a plain laptop. Moreover, using a graphical user interface is often discarded in favor of using the command line. This imposes a double paradigm shift for prospective users who must:

  1. Work with the command line interface (CLI) or terminal, rather than a graphical user interface (GUI)
  2. Work with a distributed set of computers (called nodes) rather than the machine attached to their keyboard & mouse
Challenge

I’ve Never Used a Server, Have I?

Take a minute and think about which of your daily interactions with a computer may require a remote server or even cluster to provide you with results.

  • Checking email: your computer (possibly in your pocket) contacts a remote machine, authenticates, and downloads a list of new messages; it also uploads changes to message status, such as whether you read, marked as junk, or deleted the message. Since yours is not the only account, the mail server is probably one of many in a data center.
  • Searching for a phrase online involves comparing your search term against a massive database of all known sites, looking for matches. This “query” operation can be straightforward, but building that database is a monumental task! Servers are involved at every step.
  • Searching for directions on a mapping website involves connecting your
    1. starting and (B) end points by traversing a graph in search of the “shortest” path by distance, time, expense, or another metric. Converting a map into the right form is relatively simple, but calculating all the possible routes between A and B is expensive.
  • Streaming a movie or music: when you press play on a streaming service, your computer requests data from a network of servers spread around the world. These servers ensure your video starts fast and doesn’t pause mid-climax.
  • Playing an online game: whether you’re in a massive multiplayer battle or just racing a friend, a game server keeps everyone’s view of the world synchronized. Every jump, shot, and respawn is coordinated in real time by remote machines.
  • Asking a virtual assistant for help: saying “Hey Siri” or “OK Google” sends your voice to servers that run speech recognition and natural language models.
  • Using cloud storage: saving a document to somewhere in the cloud means it’s being encrypted, stored, and backed up across multiple servers — possibly even across continents — so it’s safe even if your laptop isn’t.

Checking email could be serial: your machine connects to one server and exchanges data. Searching by querying the database for your search term (or endpoints) could also be serial, in that one machine receives your query and returns the result. However, assembling and storing the full database is far beyond the capability of any one machine. Therefore, these functions are served in parallel by a large, “hyperscale” collection of servers working together.

Key Points
  • High Performance Computing (HPC) typically involves connecting to very large computing systems located elsewhere in the world.
  • These systems can perform tasks that would be impossible or much slower on smaller, personal computers.
  • We already rely on remote servers every day.