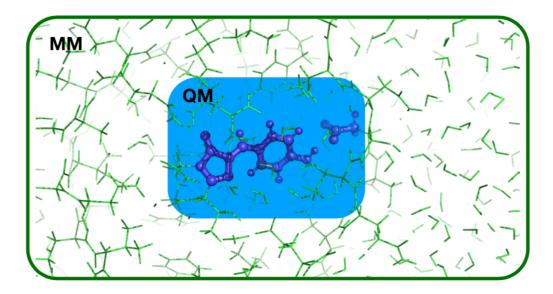


European Union Funding for Research & Innovation

CP2K – QM/MM Practical

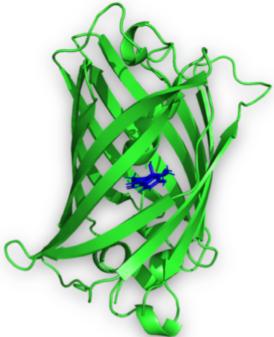

Aims

- Run a QM/MM simulation using CP2K on multiple nodes with MPI+OpenMP
 - Look at the effect of threading across multiple nodes
- Learn about profiling CP2K what can we profile and why is it useful.
- Look at the communication (Message Passing) overheads and how they affect the scaling.
- Think about the different sorts of overheads that can limit scaling.

QM/MM

- MD simulation where you want the accuracy of QM in some region(s), but need classical forces (MM) in general as the system is large.
- An example of this is a protein in a liquid.
- QM energy is calculated using DFT. CP2K uses the QUICKSTEP method: a mixture of Gaussians and Plane wave basis sets.
- The coupling between the QM/MM regions is calculated using GEEP (Gaussian expansion of the Electrostatic Potential).

$$\begin{split} E = E_{QM} + E_{MM} + E_{QM/MM} \\ & \text{QuickStep} & \text{GEEP} \end{split}$$


CP2K

Used to perform atomistic simulations – mainly using density functional theory (DFT) Can be run with pure MPI– **cp2k.popt,** or MPI+OpenMP - **cp2k.psmp**

Features

- Energy and Forces
- Optimisation
 - Geometry optimisation
 - Nudged elastic band
- Molecular Dynamics
 - Born-Oppenheimer MD
- Properties
 - Atomic charges (RESP, Mulliken..)
 - Spectra
 - Frequency calculations

Green Fluorescent Protein with 20 QM atoms

CP2K QM/MM best practice guide https://docs.bioexcel.eu/qmmm_bpg/en/main/

CP2K - Profiling

- - -	ТІМ	ING				- - -
SUBROUTINE	CALLS	ASD	S	ELF TIME	TOTAL TIME	
	MAXIMUM		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
СР2К	1	1.0	1.012	1.093	579.165	579.166
qs_mol_dyn_low	1	2.0	0.004	0.005	566.513	566.935
qs_forces	2	3.5	0.000	0.001	465.518	465.519
qs_energies	2	4.5	0.000	0.000	457.119	457.120
scf_env_do_scf	2	5.5	0.000	0.000	453.759	453.759
<pre>scf_env_do_scf_inner_loop</pre>	90	6.2	0.002	0.006	437.466	437.466
rebuild_ks_matrix	92	8.2	0.000	0.000	365.177	365.220
qs_ks_build_kohn_sham_matrix	92	9.2	0.016	0.017	365.177	365.220
qs_ks_update_qs_env	94	7.2	0.001	0.001	356.828	356.870

- CP2K output file gives timings of the called routines see <u>https://www.cp2k.org/dev:profiling</u>
- SELF TIME time spent only in this routine
- TOTAL TIME time spent in this routine, including subroutines called by it
- AVERAGE averaged over ranks. MAXIMUM max time of all ranks
- Difference between AVERAGE time and MAXIMUM time indicates load imbalance or synchronisation.

Exercise – Scaling of QM/MM simulations with CP2K

- Download the input files
- Create a suitable job script for running CP2K.
- Explore running the QM/MM simulation (qmmm-1.inp) on a single node of ARCHER2 with MPI+OpenMP.
- Identify the time spent in message passing routines.
- What fraction of the total time is spent in these routines?
- How does this change as the number of nodes is increased?
- Advanced: Repeat for the qmmm-4.inp system which has 77 QM atoms. How is this different?

BioExcel Partners

Horizon 2020 European Union Funding for Research & Innovation BioExcel is funded by the European Union Horizon 2020 program under grant agreements 675728 and 823830.