
CP2K QM/MM Practical Instructions

The aim of this exercise is to quantify the communication
overheads in a CP2K QM/MM simulation. A simulation of an
equilibrated Green Fluorescent Protein in water will be run
on ARCHER on multiple nodes. This system has 28264
atoms with 20 of those being QM atoms (qmmm-1.inp).

Download the required files

The first part of this exercise will be to run a QM/MM
simulation on 1,2, and 4 ARCHER2 nodes (128, 256, 512
cores). Download the relevant files:

user@uan02:~> wget https://github.com/EPCCed/20210322-intro-hpc-life-
scientists/raw/gh-pages/files/QMMM-CP2K-practical-files.tar.gz
user@uan02:~> tar xvf QMMM-CP2K-practical-files.tar.gz

user@uan02:~> cd CP2K-practical-files

user@uan02:~> ls
NPT-1.restart gfp_new1.prmtop gfp_new4.prmtop qmmm-1.inp qmmm-4.inp

qmmm-1.inp is the CP2K input file for the first QM/MM calculation. The gfp_new1.prmtop file
contains the AMBER forcefield/topology and the NPT-1.restart contains restart information
such as the atomic coordinates and velocities. This allows us to start with an equilibrated system.

These files should be in the same directory as the CP2K input file when you run the job. You can
see these filenames specified in the qmmm-1.inp file.

Next you will have to create a job script to run CP2K. See https://docs.archer2.ac.uk/research-
software/cp2k/cp2k/ for example job scripts. There are MPI-only and MPI+OpenMP examples.

Please take the MPI+OpenMP example for this exercise. You will need to change the name of the
input file to qmmm-1.inp and set the account to the budget code for the course (ta017), and add
in the reservation request (#SBATCH --reservation=ta017_133).

——————————————————————
#!/bin/bash

Request 4 nodes with 16 MPI tasks per node each using 8 threads;
note this means 128 MPI tasks in total.
Remember to replace [budget code] below with your account code,
e.g. '--account=t01'.

#SBATCH --job-name=CP2K_test
#SBATCH --nodes=2
#SBATCH --tasks-per-node=16
#SBATCH --cpus-per-task=8
#SBATCH --time=00:20:00

#SBATCH --account=[budget code]
#SBATCH --partition=standard
#SBATCH --qos=standard

Load the relevant CP2K module
Ensure OMP_NUM_THREADS is consistent with cpus-per-task above
Launch the executable

module load epcc-job-env
module load cp2k

export OMP_NUM_THREADS=8
export OMP_PLACES=cores

srun --hint=nomultithread --distribution=block:block cp2k.psmp -i MYINPUT.inp
——————————————————————

MPI+OpenMP on a single node

We are going to explore multithreading on a single node of ARCHER2 and have a look at some of
the communication overheads. Set --nodes=1 in the job script.

First try and run with a single thread, you will need to change —tasks-per-node, --cpus-
per-task and OMP_NUM_THREADS in the job script (remember --tasks-per-node ⨉ --cpus-
per-task should be 128). You should find that this calculation does not complete. What is the
error message?

Now increase the number of threads to 2 (again editing —tasks-per-node, --cpus-per-
task and OMP_NUM_THREADS). The calculation should complete this time (it will take around 2.5
minutes).

When the computation completes the TIMING report is printed at the end of the output file. The
TOTAL TIME for CP2K represents the time for the entire run. Subroutine times are printed below in
order of the total time spent in them.

 - -
 - T I M I N G -
 - -

 SUBROUTINE CALLS ASD SELF TIME TOTAL TIME
 MAXIMUM AVERAGE MAXIMUM AVERAGE MAXIMUM
 CP2K 1 1.0 0.346 0.355 224.489 224.490
 qs_mol_dyn_low 1 2.0 0.289 0.290 214.681 214.945
 qs_forces 2 3.5 0.028 0.028 136.364 136.365
 qs_energies 2 4.5 0.057 0.058 132.411 132.411
 scf_env_do_scf 2 5.5 0.002 0.003 130.218 130.219
 scf_env_do_scf_inner_loop 54 6.3 0.006 0.008 124.300 124.301
 rebuild_ks_matrix 56 8.2 0.001 0.001 103.475 103.478
 qs_ks_build_kohn_sham_matrix 56 9.2 0.029 0.036 103.474 103.476
 qs_ks_update_qs_env 57 7.3 0.001 0.001 99.572 99.574

Record the total run time. This can be done easily using the grep command:

user@uan02:~> grep ‘CP2K ‘ slurm-XXXX.out

The message passing routines are named with mp at the start e.g. mp_xxxxxx. The run times for
these give an idea of the time required for MPI communications. You can find all of the these in
the output with the following grep command.

user@uan02:~> grep ‘mp_' slurm-XXXX.out

Which could return timings for:

mp_alltoall_z22v, mp_sum_d3, mp_waitany

Record the self time maximum (5th column in the timing report) for each of these.

Repeat for 2, 4, 8, 16, and 32 threads and fill in the values in the table below.

Does using more threads speed up the overall run time? What about the message
passing routines?

The performance on 32 threads is much poorer than the others. Can you think why this
is?

Nodes Threads Time CP2K
(s)

T_total

Time
mp_alltoall_z22v
(s)

Time
mp_sum_dm3
(s)

Time
mp_waitany
(s)

Total time
mp_ routines
(s)

T_mp

1 2

4

8

16

32

Multiple Nodes and MPI+OpenMP

Try increasing the number of nodes the job script and repeat the multithreading
investigation on 2 and 4 nodes. Your table should now look something like this.

Is the best performing number of threads the same for 1, 2 and 4 nodes?

Why might threads speed up parts of the calculation?

Communication Overheads

What happens to the run time of mp_sum as the number of threads is increased?

What happens to the run time of mp_alltoall as the number of threads is increased?

Calculate the fraction of time spent doing communications.

i.e. T_mp/T_total

How does this change (roughly) as the number of nodes is increased?

Nodes Threads Time CP2K
(s)

T_total

Time
mp_alltoall_z22v
(s)

Time
mp_sum_dm3
(s)

Time
mp_waitany
(s)

Total time
mp_ routines
(s)

T_mp

1 2

4

8

16

32

2 2

4

8

16

32

4 2

4

8

16

32

Advanced exercise - qmmm-4.inp

Investigate the performance for a different system - qmmm-4.inp. This has 77 QM atoms, but the
same number of total atoms as qmmm-1.inp. Record the run time and message passing times
using 4 threads on 1,2,4, and 8 nodes. How do these compare to the small QM system?

Nodes Threads Time CP2K
(s)

T_total

Time
mp_alltoall_z22v
(s)

Time
mp_sum_dm3
(s)

Time
mp_waitany
(s)

Total time
mp_ routines
(s)

T_mp

1 4

2 4

4 4

8 4

