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Outline

• Shared-memory parallelism
• Threads
• OpenMP
• Shared-memory in HPC machines

• Message-passing (distributed) parallelism
• Processes
• MPI libraries
• Distributed-memory in HPC machines

• Hybrid (MPI+OpenMP) parallelism
• A combination of the above

• Exploiting GPU parallelism
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Shared Memory
Thread-based parallelism
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Shared-memory concepts

• Threads can see the data of the 
parent process
• These threads are assigned to 

different physical cores on the 
processor
• The threads can operate on 

different parts of the data – this 
allows for parallel speed up
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Analogy

• One very large whiteboard in a two-person office
• the shared memory

• Two people working on the same problem
• the threads running on different cores attached to the memory

• How do they collaborate?
• working together
• but not interfering

• Also need private data
my 

data

shared data
my 

data
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Thread communication

• Each thread can read 
and write to the shared 
data
• Therefore they can

communicate by 
reading and writing to 
this shared space.
• Synchronisation crucial 

for shared variables 
approach.
• thread 2’s code must 

execute after thread 1

Thread 1 Thread 2
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OpenMP

• OpenMP is an Application Program Interface (API) for 
shared memory programming using threads
• You can expect OpenMP to be supported by all compilers on all HPC 

platforms
• Example usage: gcc –fopenmp mycode.c –o mycode

• Parallelism is implicit ie. a lot is abstracted from the 
programmer
• You specify which parts of the program you want to parallelise and the 

compiler produces a parallel executable
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Example: OpenMP Loop parallelism

• The most common form of OpenMP parallelism is to 
parallelise the work in a loop
• The OpenMP directives tell the compiler to divide the iterations of the 

loop between the threads

#pragma omp parallel shared(a,b,c) private(i)
{

#pragma omp for
for (i=0; i < N; i++) {
c[i] = a[i] + b[i];

}
}
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Hardware

• Shared-memory parallelism 
can only take place on 
cores that share memory 
i.e a single node or 
memory region.
• Would expect poor 

performance if used across 
multiple memory regions.
• We are usually restricted to

only a few 10s of threads
on most machines
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Usage

• Number of threads set by using the environment variable 
OMP_NUM_THREADS e.g.

export OMP_NUM_THREADS=2

• On ARCHER2 (Slurm), also set the SBATCH option --
cpus-per-task. This is the number of cores allocated to a 
single process (task) and should be the same as the number 
of threads to ensure one core per thread.
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Message Passing
Distributed parallelism



bioexcel.eu

Distributed memory parallelism

• The data is distributed 
amongst the processes.
• Create smaller sub-problems  

- parallelism
• Processes can only see their 

own data.
• Communication between 

them is done via messages.
• A process can send data to 

another process
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Analogy

• Two whiteboards in different single-person offices
• the distributed memory

• Two people working on the same problem
• the processes on different nodes attached to the interconnect

• How do they collaborate?
• to work on single problem

• Explicit communication
• e.g. by telephone
• no shared data

my data my data
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Process communication

• Explicit messages 
between processes.

• Messages are two-
sided, they require a 
send and a receive.

• To send a message 
must specify the data to 
send and the
destination process.

• The receive counterpart 
must match the sender 
process number.
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Hardware

• Processes can be 
distributed across multiple 
nodes with one process per 
core, and messages across 
in the interconnect
• Intra-node messages are 

fast.
• Message passing is the 

standard parallelism for 
modern machines as it can 
exploit cores across 
multiple nodes.
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Message passing interface (MPI)

• MPI is a portable library used for writing parallel programs 
using the message passing model

• There are a number of different implementations but all 
should support the MPI standard
• Examples: MPICH, Open MPI, Intel MPI

• In message-passing all the parallelism is explicit
• The programmer needs to decide how to decompose the problem over 

processes
• Then what to send/receive and when/how often
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Communications

• Point-to-point 
communications
• A message sent by one 

process and received by 
another

• Collective communications
• Involve “all” processes
• E.g. Broadcasting data to all

processes
• More efficient than many 

point-to-point messages
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Usage

• For pure MPI one process is associated with one physical 
core
• The job launcher launches the same program across 

multiple processes.
• e.g. srun, mpirun, mpiexec, aprun

• Need to specify the number of processes in the job
• --ntasks-per-node or --ntasks
• This is the number of copies of the program created
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MPI+OpenMP
Mixed mode parallelism
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Hybrid MPI+OpenMP

• Modern HPC machines are 
distributed clusters
• Cannot use shared memory (threads) 

across nodes – limited to a single node
• Can instead use shared memory within a 

node and message passing between 
nodes. i.e. each process spawns multiple
threads

• This is known as MPI+OpenMP
• Has the possibility to improve the 

performance
• Can also decrease the overall memory 

requirements
• Less copies of data on a node
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MPI+OpenMP Usage

• Implemented in lots of HPC 
applications
• However not always more 

performant than using a single 
thread (e.g. pure MPI)

• Number of threads to use needs 
to be tuned to the use case and 
the machine

• Need to be aware of the 
underlying node structure when 
running e.g. memory regions
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Usage

• Need to think about the placement of processes and 
threads on the node architecture
• Ensure each thread is placed on a separate core
• Want to populate entire nodes

• Set the no_processes x no_threads = total_no_cores
• Options in the job script to do this

• The shared memory portion (i.e. groups of threads) 
should not span more than one NUMA region – see 
exercise
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GPU parallelism
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GPU based parallelism

• GPUs ideal for some HPC applications as they are designed for 
doing many numerical operations at once
• Many many threads (many many cores)
• Ideal if cores execute same operations (e.g. on different subsets of data)

• Specific numerically intense calculations offloaded to GPU
• Rest of code runs on CPU

• GPU (“device”) memory is separate from main (“host”) memory
• Requires copying data onto and off the GPU

• Application may run on multiple GPUs per node, and on many nodes
• Communication between GPUs typically MPI between host memory spaces
• NVLINK enables fast communication directly between GPU memory spaces 

(i.e. bypassing host memories)
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GPU programming

• Nvidia GPUs: CUDA
• Proprietary Nvidia software (available on all systems with Nvidia GPUs)
• Application Programming Interface (API) and runtime platform
• Rewrite numerically intensive code as GPU-specific function: kernel
• Includes functions to shift data between CPU and GPU memory

• Most recent OpenMP standard (4.0) incorporates simple 
syntax for offloading execution to GPUs

• HIP – kernel language for Nvidia and AMD GPUs
• Can convert CUDA code to HIP (increased portability)
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Scientific libraries

• Scientific libraries contain highly optimised code used by 
different scientific (HPC) applications
• Library code contains implementations of common mathematical 

routines
• Dense & sparse linear algebra, fast fourier transforms, etc. 

• Parallel (MPI & thread-based) versions of many of these 
libraries are available
• Critical for performance of many large-scale HPC applications
• Includes parallel IO (writing and reading large amounts of data quickly 

in parallel)
• More recently, versions that offload to GPU using CUDA increasingly 

available
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Summary

• Shared-variables parallelism e.g. with OpenMP
• uses threads 
• requires shared-memory
• easy to implement but limited scalability

• Distributed memory e.g with MPI
• uses processes
• can run on any machine: messages can go over the interconnect
• harder to implement but better scalability

• MPI+OpenMP
• Shared memory within a node, message passing across nodes
• Can have advantages over pure MPI, but not always

• GPU parallelism
• Using GPUs for HPC


