
bioexcel.eu

Partners Funding

Parallel Programming models
Different ways to exploit parallelism

bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their
permission before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

bioexcel.eu

Outline

• Shared-memory parallelism
• Threads
• OpenMP
• Shared-memory in HPC machines

• Message-passing (distributed) parallelism
• Processes
• MPI libraries
• Distributed-memory in HPC machines

• Hybrid (MPI+OpenMP) parallelism
• A combination of the above

• Exploiting GPU parallelism

bioexcel.eu

Shared Memory
Thread-based parallelism

bioexcel.eu

Shared-memory concepts

• Threads can see the data of the
parent process
• These threads are assigned to

different physical cores on the
processor
• The threads can operate on

different parts of the data – this
allows for parallel speed up

a0 a1 a2 a3 a4 a5 a6 a7

P0(T0)
a0 a1 a2 a3 a4 a5 a6 a7

P0

P0(T1)

bioexcel.eu

Analogy

• One very large whiteboard in a two-person office
• the shared memory

• Two people working on the same problem
• the threads running on different cores attached to the memory

• How do they collaborate?
• working together
• but not interfering

• Also need private data
my

data

shared data
my

data

bioexcel.eu

Thread communication

• Each thread can read
and write to the shared
data
• Therefore they can

communicate by
reading and writing to
this shared space.
• Synchronisation crucial

for shared variables
approach.
• thread 2’s code must

execute after thread 1

Thread 1 Thread 2

my_a=23
my_a=a+1

23

23 24

Program

Private
data

Shared
data

a=my_a

bioexcel.eu

OpenMP

• OpenMP is an Application Program Interface (API) for
shared memory programming using threads
• You can expect OpenMP to be supported by all compilers on all HPC

platforms
• Example usage: gcc –fopenmp mycode.c –o mycode

• Parallelism is implicit ie. a lot is abstracted from the
programmer
• You specify which parts of the program you want to parallelise and the

compiler produces a parallel executable

bioexcel.eu

Example: OpenMP Loop parallelism

• The most common form of OpenMP parallelism is to
parallelise the work in a loop
• The OpenMP directives tell the compiler to divide the iterations of the

loop between the threads

#pragma omp parallel shared(a,b,c) private(i)
{

#pragma omp for
for (i=0; i < N; i++) {
c[i] = a[i] + b[i];

}
}

bioexcel.eu

Hardware

• Shared-memory parallelism
can only take place on
cores that share memory
i.e a single node or
memory region.
• Would expect poor

performance if used across
multiple memory regions.
• We are usually restricted to

only a few 10s of threads
on most machines

bioexcel.eu

Usage

• Number of threads set by using the environment variable
OMP_NUM_THREADS e.g.

export OMP_NUM_THREADS=2

• On ARCHER2 (Slurm), also set the SBATCH option --
cpus-per-task. This is the number of cores allocated to a
single process (task) and should be the same as the number
of threads to ensure one core per thread.

bioexcel.eu

Message Passing
Distributed parallelism

bioexcel.eu

Distributed memory parallelism

• The data is distributed
amongst the processes.
• Create smaller sub-problems

- parallelism
• Processes can only see their

own data.
• Communication between

them is done via messages.
• A process can send data to

another process

a0 a1 a2 a3 a4 a5 a6 a7

P0 P1
a0 a1 a2 a3 a0 a1 a2 a3

bioexcel.eu

Analogy

• Two whiteboards in different single-person offices
• the distributed memory

• Two people working on the same problem
• the processes on different nodes attached to the interconnect

• How do they collaborate?
• to work on single problem

• Explicit communication
• e.g. by telephone
• no shared data

my data my data

bioexcel.eu

Process communication

• Explicit messages
between processes.

• Messages are two-
sided, they require a
send and a receive.

• To send a message
must specify the data to
send and the
destination process.

• The receive counterpart
must match the sender
process number.

a=23 Recv(1,b)
Process 1

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process 2

bioexcel.eu

Hardware

• Processes can be
distributed across multiple
nodes with one process per
core, and messages across
in the interconnect
• Intra-node messages are

fast.
• Message passing is the

standard parallelism for
modern machines as it can
exploit cores across
multiple nodes.

bioexcel.eu

Message passing interface (MPI)

• MPI is a portable library used for writing parallel programs
using the message passing model

• There are a number of different implementations but all
should support the MPI standard
• Examples: MPICH, Open MPI, Intel MPI

• In message-passing all the parallelism is explicit
• The programmer needs to decide how to decompose the problem over

processes
• Then what to send/receive and when/how often

bioexcel.eu

Communications

• Point-to-point
communications
• A message sent by one

process and received by
another

• Collective communications
• Involve “all” processes
• E.g. Broadcasting data to all

processes
• More efficient than many

point-to-point messages

P0 P1

P0

P1

P2

P3

P4

bioexcel.eu

Usage

• For pure MPI one process is associated with one physical
core
• The job launcher launches the same program across

multiple processes.
• e.g. srun, mpirun, mpiexec, aprun

• Need to specify the number of processes in the job
• --ntasks-per-node or --ntasks
• This is the number of copies of the program created

bioexcel.eu

MPI+OpenMP
Mixed mode parallelism

bioexcel.eu

Hybrid MPI+OpenMP

• Modern HPC machines are
distributed clusters
• Cannot use shared memory (threads)

across nodes – limited to a single node
• Can instead use shared memory within a

node and message passing between
nodes. i.e. each process spawns multiple
threads

• This is known as MPI+OpenMP
• Has the possibility to improve the

performance
• Can also decrease the overall memory

requirements
• Less copies of data on a node

bioexcel.eu

MPI+OpenMP Usage

• Implemented in lots of HPC
applications
• However not always more

performant than using a single
thread (e.g. pure MPI)

• Number of threads to use needs
to be tuned to the use case and
the machine

• Need to be aware of the
underlying node structure when
running e.g. memory regions

bioexcel.eu

Usage

• Need to think about the placement of processes and
threads on the node architecture
• Ensure each thread is placed on a separate core
• Want to populate entire nodes

• Set the no_processes x no_threads = total_no_cores
• Options in the job script to do this

• The shared memory portion (i.e. groups of threads)
should not span more than one NUMA region – see
exercise

bioexcel.eu

GPU parallelism

bioexcel.eu

GPU based parallelism

• GPUs ideal for some HPC applications as they are designed for
doing many numerical operations at once
• Many many threads (many many cores)
• Ideal if cores execute same operations (e.g. on different subsets of data)

• Specific numerically intense calculations offloaded to GPU
• Rest of code runs on CPU

• GPU (“device”) memory is separate from main (“host”) memory
• Requires copying data onto and off the GPU

• Application may run on multiple GPUs per node, and on many nodes
• Communication between GPUs typically MPI between host memory spaces
• NVLINK enables fast communication directly between GPU memory spaces

(i.e. bypassing host memories)

bioexcel.eu

GPU programming

• Nvidia GPUs: CUDA
• Proprietary Nvidia software (available on all systems with Nvidia GPUs)
• Application Programming Interface (API) and runtime platform
• Rewrite numerically intensive code as GPU-specific function: kernel
• Includes functions to shift data between CPU and GPU memory

• Most recent OpenMP standard (4.0) incorporates simple
syntax for offloading execution to GPUs

• HIP – kernel language for Nvidia and AMD GPUs
• Can convert CUDA code to HIP (increased portability)

bioexcel.eu

Scientific libraries

• Scientific libraries contain highly optimised code used by
different scientific (HPC) applications
• Library code contains implementations of common mathematical

routines
• Dense & sparse linear algebra, fast fourier transforms, etc.

• Parallel (MPI & thread-based) versions of many of these
libraries are available
• Critical for performance of many large-scale HPC applications
• Includes parallel IO (writing and reading large amounts of data quickly

in parallel)
• More recently, versions that offload to GPU using CUDA increasingly

available

bioexcel.eu

Summary

• Shared-variables parallelism e.g. with OpenMP
• uses threads
• requires shared-memory
• easy to implement but limited scalability

• Distributed memory e.g with MPI
• uses processes
• can run on any machine: messages can go over the interconnect
• harder to implement but better scalability

• MPI+OpenMP
• Shared memory within a node, message passing across nodes
• Can have advantages over pure MPI, but not always

• GPU parallelism
• Using GPUs for HPC

