
bioexcel.eu

Partners Funding

Parallel Computing Patterns
Overview and Concepts

bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on
the material under the following terms: You must give appropriate credit, provide a
link to the license and indicate if changes were made. If you adapt or build on the

material you must distribute your work under the same license as the original.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

bioexcel.eu

Outline

•Parallel computing & parallel programming

•Parallel decomposition patterns
• Geometric decomposition
• Task farm / worker queue
• Pipeline
• Loop parallelism

bioexcel.eu

Understanding parallel computing

• Understanding how software runs in parallel should help you:
• make better-informed choices what software to use for your research
• understand what problems can emerge (parallel performance or errors)
• make better use of high-performance computers (and even your laptop!)
• get your research done more quickly

bioexcel.eu

Parallel programming?

• This course will not teach you how to program in parallel

• It will provide you with an overview of some of the common
ways this is done

• There are two aspects to this:
1. how computational work can be split up and divided amongst

processors/cores in an abstract sense (the topic of this lecture)
2. how this can actually be implemented in hardware and software

(later lectures)

bioexcel.eu

Performance

• A key aim is to solve problems faster
• To improve the time to solution
• Enable new scientific problems to be solved

• To exploit parallel computers, need to split the program up
between different processors (cores)
• distinguish between processors and cores when it matters, otherwise use

interchangeably - more in lecture on hardware.

• Ideally, would like program to run P times faster on P processors
• Not all parts of program can be successfully split up
• Splitting the program up may introduce additional overheads such as

communication

bioexcel.eu

Parallel tasks

• How we split a problem up into tasks to run in parallel is critical
1. Ideally limit interaction (information exchange) between tasks as this

takes time and may require processors to wait for each other
2. Want to balance the workload so all processors are equally busy - if

they are all equally powerful this gives the shortest time to solution

• “Tightly coupled” problems require lots of interaction between their
parallel tasks
• “Embarrassingly parallel” problems require very little (or no)

interaction between their parallel tasks
• e.g. sequence alignment queries for multiple independent sequences

• In reality most problems sit somewhere between the two extremes

bioexcel.eu

Parallel Decomposition
How do we split problems up to solve them efficiently in parallel?

bioexcel.eu

Decomposition

• One of the most challenging, but also most important,
decisions is how to split the problem up

• How you do this depends upon a number of factors
• The nature of the problem
• The required amount and frequency of interaction (information

exchange) between tasks
• Support from implementation technologies

• We are going to look at some frequently used parallel
decomposition patterns

bioexcel.eu

1. Geometric Decomposition

Based on a geometric division of the spatial domain of a problem
Biomolecular simulation Weather Simulation

From: GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX, Volumes 1–2, 2015, 19–25.
http://dx.doi.org/10.1016/j.softx.2015.06.001 (reuse permitted under CC BY 4.0)

Molecular Dynamics Practical

http://dx.doi.org/10.1016/j.softx.2015.06.001

bioexcel.eu

1. Geometric Decomposition

• Spatial domain divided geometrically into cells
• Simplest case:
• all cells same size and shape
• one cell per processor

• More adaptable:
• variably-sized and shaped cells
• more cells than processors

• Information exchange required between cells:
• temperature, pressure, humidity etc. for weather simulation
• atomic/molecular charges to compute forces in biomolecular simulation

Molecular Dynamics Practical

bioexcel.eu

1. Geometric Decomposition

• Splitting the problem up does have an associated cost
• Requires exchange of information between processors
• Need to carefully consider granularity
• Aim to minimise communication and maximise computation

Molecular Dynamics Practical

bioexcel.eu

1. Geometric Decomposition

• Swap data between cells

• Often only need information
on cell boundaries

• Many small messages result
in far greater overhead
• instead exchange all boundary

values periodically by swapping
cell “halos”.

Molecular Dynamics Practical

bioexcel.eu

Load Imbalance

• Overall execution time worse if some processors take longer
than the rest

• Each processor should have (roughly) the same amount of
work, i.e. they should be load balanced

• For many problems it is unlikely that all cells require same
amount of computation
• Expect “hotspots” – regions where more compute is needed, e.g.:
• localised high-low pressure fronts (weather simulation)
• cells containing complex protein segments (biomolecular simulation)

Molecular Dynamics Practical

bioexcel.eu

Load Imbalance

• Can measure degree of load imbalance
• see lecture on measuring parallel performance

• Techniques exist to deal with load imbalance:
• Assign multiple cells to each processor
• Use variably-sized cells in the first place to compensate for hotspots
• Allow processors to dynamically “steal” work from others

• Load balancing can be done
• once at the start of program execution (static)
• throughout execution (dynamic)

Molecular Dynamics Practical

bioexcel.eu

2. Task farm (master / worker)

• Split a problem up into distinct, independent, tasks

• Master process sends task to a worker
• Worker process sends results back to the master
• The number of tasks is often much greater than the number of

workers and tasks get allocated to idle workers dynamically

Master

Worker 3Worker 2Worker 1 Worker n…

Sequence Alignment
Practical

bioexcel.eu

Task farm considerations

• Communication is between the master and the workers
• Communication between the workers can complicate things

• The master process can become a bottleneck
• Workers are idle waiting for the master to send them a task or

acknowledge receipt of results
• Potential solution: implement work stealing

• Resilience – what happens if a worker stops responding?
• Master could maintain a list of tasks and redistribute that worker’s work

Sequence Alignment
Practical

bioexcel.eu

3. Pipelines

• Some problems involve operating on many pieces of data in
turn. The overall calculation can be viewed as data flowing
through a sequence of stages and being operated on at
each stage.

• Each stage runs on a processor, each processor
communicates with the processor holding the next stage
• One way flow of data

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5Data Result

bioexcel.eu

Example: pipeline with 4 processors

• Each processor (one per colour) is responsible for a different
task or stage of the pipeline
• Each processor acts on data (numbered) as they move

through the pipeline

Data Result

1

2 1

3 2 1

4 3 2 1

bioexcel.eu

Examples of pipelines

• CPU architectures
• Fetch, decode, execute, write back
• Intel Pentium 4 had a 20 stage pipeline

• Unix shell
• i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’

• Graphics/GPU pipeline

• A generalisation of pipeline (a workflow, or dataflow) is becoming
more and more relevant to large, distributed scientific workflows
• Can combine the pipeline with other decompositions

bioexcel.eu

4. Loop Parallelism

• Serial scientific applications are often dominated by
computationally intensive loops
• Some of these can be parallelised directly
• e.g.10 cores simultaneously perform 1000 iterations each instead of 1

core performing 10 000 iterations
• Simple techniques exist to do this incrementally,

i.e. in small steps whilst maintaining a working code
• This makes the decomposition very easy to implement
• Often large restructuring of the code is not required

• Tends to work best with small-scale parallelism
• Not suited to all architectures
• Not suited to all loops

bioexcel.eu

Summary

• A variety of common decomposition patterns exist that
provide well-known approaches to parallelising a serial
problem
• You can see examples of some of these during the practical sessions

• There are many considerations when parallelising code:
• Granularity of the decomposition
• Tradeoff of communication and computation
• Load imbalance

• Parallel applications implement clever variations on these
decomposition schemes to optimise parallel performance
• Knowing some of this will help you understand what is going on

