
Introductory C++ exercises

Rupert Nash

r.nash@epcc.ed.ac.uk

The files for this are on Github.

To check out the repository run:

git clone https://github.com/EPCCed/2019-04-16-ModernCpp.git.git
cd 2019-04-16-ModernCpp/practicals/01

Array

The array is a fundamental data structure, especially for processing large amounts
of data, as it allows the system to take advantage of the cache hierarchy.

Recall the array examples from the lecture - in 2019-04-16-ModernCpp/practicals/-array
is a basic implementation and a (hopefully) working test program.

Compile this and run it for a few problem sizes. What is the scaling?

We need to take a decision about copying - do we wish to allow implicit copying
which for large arrays is very slow? If not, should we add an explicit method to
do this? What would its signature be? How would we tell the compiler not to
allow this?

Libraries

While we’ve taken an RAII approach here, it comes with some overhead: we had
to implement (or delete) five functions.

A more idiomatic approach is to wrap the resource into a class that does nothing
but manage a resource, then it can be used elsewhere and the compiler will
produce correct implicit constructors, destructor and assignment operators with
no boilerplate code!

See one of the below for an in-depth discussion: * http://en.cppreference.com/
w/cpp/language/rule_of_three * http://scottmeyers.blogspot.co.uk/2014/03/a-
concern-about-rule-of-zero.html

Fortunately the standard library includes several “smart pointers” that will do
this for you for memory! They can be accessed using the <memory> header.

They are:

1

https://github.com/EPCCed/2019-04-16-ModernCpp.git
http://en.cppreference.com/w/cpp/language/rule_of_three
http://en.cppreference.com/w/cpp/language/rule_of_three
http://scottmeyers.blogspot.co.uk/2014/03/a-concern-about-rule-of-zero.html
http://scottmeyers.blogspot.co.uk/2014/03/a-concern-about-rule-of-zero.html


• std::unique_ptr - this uniquely owns the pointed-to object. The object
is deleted (can be customised) when the smart pointer destructs or you
assign a new value. You cannot copy a unique_ptr. This should be your
default pointer type!

• std::shared_ptr - this shares ownership of the pointed-to object. All the
child shared_ptrs point to the same object. The object will be deleted
when all the pointers are either destructed or assigned a new value.

• std::weak_ptr - much like a shared_ptr but it doesn’t own a share of
the object. It can become invalid. Used to break reference cycles.

(There also exists a std::auto_ptr. This is deprecated and has been removed
from C++17, so do not use it.)

Have a look at the reference and re-implement Array using either a unique or
shared pointer.

2

http://en.cppreference.com/w/cpp/memory

	Introductory C++ exercises
	Rupert Nash
	r.nash@epcc.ed.ac.uk
	Array
	Libraries


